logo
Математический анализ_умм

2.16. Теорема Ролля

(Ролль (1652-1719)- французский математик)

Если функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (а, b) и значения функции на концах отрезка равны f(a) = f(b), то на интервале (а, b) существует точка , a < < b, в которой производная функция f(x) равная нулю,

f() = 0.

Геометрический смысл теоремы Ролля состоит в том, что при выполнении условий теоремы на интервале (a, b) существует точка  такая, что в соответствующей точке кривой y = f(x) касательная параллельна оси Ох. Таких точек на интервале может быть и несколько, но теорема утверждает существование по крайней мере одной такой точки.

Доказательство. По свойству функций, непрерывных на отрезке функция f(x) на отрезке [a, b] принимает наибольшее и наименьшее значения. Обозначим эти значения М и m соответственно. Возможны два различных случая М = m и M  m.

Пусть M = m. Тогда функция f(x) на отрезке [a, b] сохраняет постоянное значение и в любой точке интервала ее производная равна нулю. В этом случае за  можно принять любую точку интервала.

Пусть М = m. Так значения на концах отрезка равны, то хотя бы одно из значений М или m функция принимает внутри отрезка [a, b]. Обозначим , a <  < b точку, в которой f() = M. Так как М- наибольшее значение функции, то для любого х ( будем считать, что точка  + х находится внутри рассматриваемого интервала) верно неравенство:

f() = f( + x) – f() 0

При этом

Но так как по условию производная в точке  существует, то существует и предел .

Т.к. и , то можно сделать вывод:

Теорема доказана.

Теорема Ролля имеет несколько следствий:

  1. Если функция f(x) на отрезке [a, b] удовлетворяет теореме Ролля, причем f(a) = f(b) = = 0, то существует по крайней мере одна точка , a <  < b, такая, что f() = 0. Т.е. между двумя нулями функции найдется хотя бы одна точка, в которой производная функции равна нулю.

  1. Если на рассматриваемом интервале (а, b) функция f(x) имеет производную (n-1)- го порядка и n раз обращается в нуль, то существует по крайней мере одна точка интервала, в котором производная (n – 1) – го порядка равна нулю.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4