logo
Математический анализ_умм

4.35. Теорема о вычетах. Вычисление интегралов с помощью вычетов

Теорема. Пусть функция f(z) – аналитическая на всей плоскости z, за исключением конечного числа точек z1, z2, …, zN. Тогда верно равенство:

А интеграл от функции по контуру L, содержащему внутри себя эти точки, равен

Эти свойства применяются для вычисления интегралов. Если функция f(z) аналитическая в верхней полуплоскости, включая действительную ось, за исключением N точек, то справедлива формула

Пример. Вычислить определенный интеграл .

Подынтегральная функция является аналитической в верхней полуплоскости за исключением точки 2i. Эта точка является полюсом второго порядка.

Найдем вычет функции

Получаем

Пример. Вычислить определенный интеграл

Подынтегральная функция является аналитической в верхней полуплоскости за исключением точки i. Эта точка является полюсом второго порядка.

Найдем вычет функции

Получаем

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4