logo
Математический анализ_умм

Циклоида

у

С

М К

О Р В а 2а х

Определение. Циклоидой называется кривая, которую описывает некоторая точка, лежащая на окружности, когда окружность без скольжения катится по прямой.

Пусть окружность радиуса а перемещается без скольжения вдоль оси х. Тогда из геометрических соображений можно записать: OB = = at; PB = MK = asint;

MCB = t; Тогда y = MP = KB = CB – CK = a – acost = a(1 – cost).

x = at – asint = a(t – sint).

Итого: при 0  t  2 - это параметрическое уравнение циклоиды.

Если исключить параметр, то получаем:

Как видно, параметрическое уравнение циклоиды намного удобнее в использовании, чем уравнение, непосредственно выражающее одну координату через другую.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4