logo
Математический анализ_умм

1.7. Предел функции в точке. Односторонние пределы

y f(x)

A + 

A

A - 

0 a -  a a +  x

Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена)

Определение. Число А называется пределом функции f(x) при ха, если для любого >0 существует такое число >0, что для всех х таких, что

0 < x - a < 

верно неравенство f(x) - A< .

То же определение может быть записано в другом виде:

Если а -  < x < a + , x  a, то верно неравенство А -  < f(x) < A + .

Запись предела функции в точке:

Определение. Если f(x)  A1 при х  а только при x < a, то - называется пределом функции f(x) в точке х = а слева, а если f(x)  A2 при х  а только при x > a, то называется пределом функции f(x) в точке х = а справа.

у

f(x)

А2

А1

0 a x

Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки.

Пределы А1 и А2 называются также односторонними пределами функции f(x) в точке х = а. Также говорят, что А – конечный предел функции f(x).

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4