logo
Математический анализ_умм

2.12. Дифференциал сложной функции. Инвариантная форма записи дифференциала

Пусть y = f(x), x = g(t), т.е у- сложная функция.

Тогда dy = f(x)g(t)dt = f(x)dx.

Видно, что форма записи дифференциала dy не зависит от того, будет ли х независимой переменной или функцией какой- то другой переменной, в связи с чем эта форма записи называется инвариантной формой записи дифференциала.

Однако, если х- независимая переменная, то

dx = x, но

если х зависит от t, то х  dx.

Таким образом форма записи dy = f(x)x не является инвариантной.

Пример. Найти производную функции .

Сначала преобразуем данную функцию:

Пример. Найти производную функции .

Пример. Найти производную функции

Пример. Найти производную функции

Пример. Найти производную функции

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4