2.14. Представление некоторых элементарных функций по формуле Тейлора. Бином Ньютона
Применение формулы Тейлора для разложения функций в степенной ряд широко используется и имеет огромное значение при проведении различных математических расчетов. Непосредственное вычисление интегралов некоторых функций может быть сопряжено со значительными трудностями, а замена функции степенным рядом позволяет значительно упростить задачу. Нахождение значений тригонометрических, обратных тригонометрических, логарифмических функций также может быть сведено к нахождению значений соответствующих многочленов.
Если при разложении в ряд взять достаточное количество слагаемых, то значение функции может быть найдено с любой наперед заданной точностью. Практически можно сказать, что для нахождения значения любой функции с разумной степенью точности (предполагается, что точность, превышающая 10 – 20 знаков после десятичной точки, необходима очень редко) достаточно 4-10 членов разложения в ряд.
Применение принципа разложения в ряд позволяет производить вычисления на ЭВМ в режиме реального времени, что немаловажно при решении конкретных технических задач.
Функция f(x) = ex
Находим: f(x) = ex, f(0) = 1
f(x) = ex, f(0) = 1
……………………
f(n)(x) = ex, f(n)(0) = 1
Тогда:
Пример: Найдем значение числа е.
В полученной выше формуле положим х = 1.
Для 8 членов разложения: e = 2,71827876984127003
Для 10 членов разложения: e = 2,71828180114638451
Для 100 членов разложения: e = 2,71828182845904553
На графике показаны значения числа е с точностью в зависимости от числа членов разложения в ряд Тейлора.
Как видно, для достижения точности, достаточной для решения большинства практических задач, можно ограничиться 6-7 – ю членами ряда.
Функция f(x) = sinx
Получаем f(x) = sinx; f(0) = 0
f(x) = cosx = sin( x + /2); f(0) = 1;
f(x) = -sinx = sin(x + 2/2); f(0) = 0;
f(x) = -cosx = sin(x + 3/2); f(0)=-1;
…………………………………………
f(n)(x) = sin(x + n/2); f(n)(0) = sin(n/2);
f(n+1)(x) = sin(x + (n + 1)/2); f(n+1)() = sin( + (n + 1)/2);
Итого:
Функция f(x) = cosx
Для функции cosx, применив аналогичные преобразования, получим:
Функция f(x) = (1 + x)
( - действительное число)
…………………………………………………..
Т огда:
Если в полученной формуле принять = n, где n- натуральное число и f(n+1)(x)=0, то Rn+1 = 0, тогда
Получилась формула, известная как бином Ньютона.
Пример: Применить полученную формулу для нахождения синуса любого угла с любой степенью точности.
На приведенных ниже графиках представлено сравнение точного значения функции и значения разложения в ряд Тейлора при различном количестве членов разложения.
Рис. 1. Два члена разложения
Рис. 2. Четыре члена разложения
Рис. 3. Шесть членов разложения
Рис. 4. Десять членов разложения
Чтобы получить наиболее точное значение функции при наименьшем количестве членов разложения надо в формуле Тейлора в качестве параметра а выбрать такое число, которое достаточно близко к значению х, и значение функции от этого числа легко вычисляется.
Для примера вычислим значение sin200.
Предварительно переведем угол 200 в радианы: 200 = /9.
Применим разложение в ряд Тейлора, ограничившись тремя первыми членами разложения:
В четырехзначных таблицах Брадиса для синуса этого угла указано значение 0,3420.
На графике показано изменение значений разложения в ряд Тейлора в зависимости от количества членов разложения. Как видно, если ограничиться тремя членами разложения, то достигается точность до 0,0002.
Выше говорилось, что при х0 функция sinx является бесконечно малой и может при вычислении быть заменена на эквивалентную ей бесконечно малую функцию х. Теперь видно, что при х, близких к нулю, можно практически без потери в точности ограничиться первым членом разложения, т.е. sinx x.
Пример: Вычислить sin2801315.
Для того, чтобы представить заданный угол в радианах, воспользуемся соотношениями:
10 = ; 280 ;
1 ; ;
; ;
рад
Если при разложении по формуле Тейлора ограничиться тремя первыми членами, получим: sinx = .
Сравнивая полученный результат с точным значением синуса этого угла,
sin = 0,472869017612759812,
видим, что даже при ограничении всего тремя членами разложения, точность составила 0,000002, что более чем достаточно для большинства практических технических задач.
Функция f(x) = ln(1 + x)
Получаем: f(x) = ln(1 + x); f(0) = 0;
f(x) = ;
………………………………………
Итого:
Полученная формула позволяет находить значения любых логарифмов (не только натуральных) с любой степенью точности. Ниже представлен пример вычисления натурального логарифма ln1,5. Сначала получено точное значение, затем – расчет по полученной выше формуле, ограничившись пятью членами разложения. Точность достигает 0,0003.
ln1,5 = 0,405465108108164381
Разложение различных функций по формулам Тейлора и Маклорена приводится в специальных таблицах, однако, формула Тейлора настолько удобна, что для подавляющего большинства функций разложение может быть легко найдено непосредственно.
Ниже будут рассмотрены различные применения формулы Тейлора не только к приближенным представлениям функций, но и к решению дифференциальных уравнений и к вычислению интегралов.
Yandex.RTB R-A-252273-3
- Тема 1. Введение в математический анализ 9
- Тема 2. Дифференциальное исчисление функции одной переменной 34
- Тема 3. Интегральное исчисление 84
- Тема 4. Ряды 144
- Требования к результатам освоения дисциплины
- Содержание дисциплины
- Тема 1. Введение в математический анализ.
- Тема 2. Дифференциальное исчисление функций одной переменной.
- Тема 3. Интегральное исчисление.
- Тема 4. Ряды.
- Формы контроля
- Литература
- Курс лекций тема 1. Введение в математический анализ
- 1.1. Числовая последовательность
- 1.2. Ограниченные и неограниченные последовательности
- 1.3. Предел
- 1.4. Монотонные последовательности
- 1.5. Число е
- 1.6. Связь натурального и десятичного логарифмов
- 1.7. Предел функции в точке. Односторонние пределы
- 1.8. Предел функции при стремлении аргумента к бесконечности
- 1.9. Основные теоремы о пределах
- 1.10. Ограниченные функции
- 1.11. Бесконечно малые функции
- 1.12. Бесконечно большие функции и их связь с бесконечно малыми
- 1.13. Сравнение бесконечно малых функций
- 1.14. Свойства эквивалентных бесконечно малых функций
- 1.15. Некоторые замечательные пределы
- 1.16. Непрерывность функции в точке
- 1.17. Свойства непрерывных функций
- 1.18. Непрерывность некоторых элементарных функций
- 1.19. Точки разрыва и их классификация
- 1.20. Непрерывность функции на интервале и на отрезке
- 1.21. Свойства функций, непрерывных на отрезке
- 1.22. Комплексные числа
- 1.23. Тригонометрическая форма числа
- 1.24. Действия с комплексными числами
- 1.25. Показательная форма комплексного числа
- Тема 2. Дифференциальное исчисление функции одной переменной
- 2.1. Производная функции, ее геометрический и физический смысл
- 2.2. Односторонние производные функции в точке
- 2.7. Производная показательно-степенной функции
- 2.8. Производная обратных функций
- 2.9. Дифференциал функции
- 2.10. Геометрический смысл дифференциала
- 2.11. Свойства дифференциала
- 2.12. Дифференциал сложной функции. Инвариантная форма записи дифференциала
- 2.13. Формула Тейлора. Формула Лагранжа. Формула Маклорена Тейлор (1685-1731) – английский математик
- Колин Маклорен (1698-1746) шотландский математик.
- 2.14. Представление некоторых элементарных функций по формуле Тейлора. Бином Ньютона
- 2.15. Применение дифференциала к приближенным вычислениям
- 2.16. Теорема Ролля
- 2.17. Теорема Лагранжа
- 2.18. Теорема Коши
- 2.19. Раскрытие неопределенностей. Правило Лопиталя
- 2.20. Производные и дифференциалы высших порядков
- 2.21. Общие правила нахождения высших производных
- 2.22. Возрастание и убывание функций
- 2.23. Точки экстремума. Критические точки. Достаточные условия экстремума
- 2.24. Исследование функции на экстремум с помощью производных высших порядков
- 2.25. Выпуклость и вогнутость кривой. Точки перегиба
- 2.26. Асимптоты
- Вертикальные асимптоты
- Наклонные асимптоты
- 2.27. Схема исследования функций
- 2.28. Векторная функция скалярного аргумента. Уравнение касательной к кривой
- 2.29. Свойства производной векторной функции скалярного аргумента
- 2.30. Уравнение нормальной плоскости
- 2.31. Параметрическое задание функции
- 2.32. Уравнения некоторых типов кривых в параметрической форме о кружность
- Циклоида
- Астроида
- 2.33. Производная функции, заданной параметрически
- 2.34. Кривизна плоской кривой
- Свойства эволюты
- 2.35. Кривизна пространственной кривой
- О формулах Френе
- 3.4. Методы интегрирования. Интегрирование различных функций
- Непосредственное интегрирование
- Способ подстановки (замены переменных)
- Интегрирование по частям
- Интегрирование элементарных дробей
- Интегрирование рациональных функций. Интегрирование рациональных дробей.
- Интегрирование некоторых тригонометрических функций
- Интегрирование некоторых иррациональных функций
- 1 Способ. Тригонометрическая подстановка.
- 3 Способ. Метод неопределенных коэффициентов.
- Несколько примеров интегралов, не выражающихся через элементарные функции
- 3.5. Определенный интеграл и его свойства
- Свойства определенного интеграла
- 3.6. Приемы и методы вычисления определенного интеграла
- Замена переменных
- Интегрирование по частям
- Приближенное вычисление определенного интеграла
- Формула прямоугольников
- Формула трапеций
- Формула парабол (формула Симпсона или квадратурная формула) (Томас Симпсон (1710-1761)- английский математик)
- 3.7. Несобственные интегралы
- 3.8. Интеграл от разрывной функции
- 3.9. Геометрические приложения определенного интеграла Вычисление площадей плоских фигур
- Нахождение площади криволинейного сектора
- Вычисление длины дуги кривой
- 3.8. Вычисление объемов тел Вычисление объема тела по известным площадям его параллельных сечений.
- Объем тел вращения
- 3.9. Площадь поверхности тела вращения
- 3.10. Функции нескольких переменных
- 3.11. Производные и дифференциалы функций нескольких переменных
- 3.12. Полное приращение и полный дифференциал
- 3.12. Геометрический смысл полного дифференциала. Касательная плоскость и нормаль к поверхности
- 3.13. Приближенные вычисления с помощью полного дифференциала
- 3.14. Частные производные высших порядков
- 3.15. Экстремум функции нескольких переменных
- Условный экстремум
- 3.16. Производная по направлению
- 3.17. Градиент
- Связь градиента с производной по направлению
- 3.18. Двойные интегралы
- Условия существования двойного интеграла
- Свойства двойного интеграла
- Вычисление двойного интеграла
- Замена переменных в двойном интеграле
- Двойной интеграл в полярных координатах
- 3.19. Тройной интеграл
- Замена переменных в тройном интеграле
- Цилиндрическая система координат
- Сферическая система координат
- 3.20. Геометрические и физические приложения кратных интегралов
- 3) Вычисление объемов тел.
- Тема 4. Ряды
- 4.1. Основные определения
- 4.2. Свойства рядов
- 4.3. Критерий Коши
- 4.4. Ряды с неотрицательными членами
- 4.5. Признак сравнения рядов с неотрицательными членами
- 4.6. Признак Даламбера
- 4.7. Предельный признак Даламбера
- 4.8. Признак Коши (радикальный признак)
- 4.9. Интегральный признак Коши
- 4.10. Знакопеременные ряды. Знакочередующиеся ряды
- 4.11. Признак Лейбница
- 4.12. Абсолютная и условная сходимость рядов
- 4.13. Признаки Даламбера и Коши для знакопеременных рядов
- 4.14. Свойства абсолютно сходящихся рядов
- 4.15. Функциональные последовательности
- 4.16. Функциональные ряды
- 4.17. Критерий Коши равномерной сходимости ряда. Признак равномерной сходимости Вейерштрасса
- 4.18. Свойства равномерно сходящихся рядов
- 4.19. Степенные ряды
- 4.20. Теоремы Абеля
- 4.21. Действия со степенными рядами
- 1) Интегрирование степенных рядов.
- 2) Дифференцирование степенных рядов.
- 3) Сложение, вычитание, умножение и деление степенных рядов.
- 4.22. Разложение функций в степенные ряды
- Если применить к той же функции формулу Маклорена
- 4.23. Решение дифференциальных уравнений с помощью степенных рядов
- 4.24. Ряды Фурье
- Тригонометрический ряд
- Достаточные признаки разложимости в ряд Фурье
- Разложение в ряд Фурье непериодической функции.
- Ряд Фурье для четных и нечетных функций
- Ряды Фурье для функций любого периода
- Ряд Фурье по ортогональной системе функций
- 4.25. Интеграл Фурье
- Можно доказать, что предел суммы, стоящий в правой части равенства равен интегралу
- 4.26. Преобразование Фурье
- 4.27. Элементы теории функций комплексного переменного
- 4.28. Свойства функций комплексного переменного
- 4.29. Основные трансцендентные функции
- 4.30. Производная функций комплексного переменного
- 4.31. Условия Коши – Римана
- 4.32. Интегрирование функций комплексной переменной
- 4.33. Теорема Коши. Интегральная формула Коши
- Интегральная формула Коши
- 4.34. Ряды Тейлора и Лорана. Изолированные особые точки
- 4.35. Теорема о вычетах. Вычисление интегралов с помощью вычетов
- Образцы решения типовых заданий
- Блок контроля контрольная работа
- Варианты заданий
- Экзаменационная работа
- Экзаменационные вопросы
- Экзаменационные практические задания
- Список рекомендуемой литературы