logo
Математический анализ_умм

3.9. Геометрические приложения определенного интеграла Вычисление площадей плоских фигур

у

+ +

0 a - b x

Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x). Если график расположен ниже оси Ох, т.е. f(x) < 0, то площадь имеет знак “-“, если график расположен выше оси Ох, т.е. f(x) > 0, то площадь имеет знак “+”.

Для нахождения суммарной площади используется формула .

Площадь фигуры, ограниченной некоторыми линиями может быть найдена с помощью определенных интегралов, если известны уравнения этих линий.

Пример. Найти площадь фигуры, ограниченной линиями y = x, y = x2, x = 2.

Искомая площадь (заштрихована на рисунке) может быть найдена по формуле:

(ед2)

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4