logo
Математический анализ_умм

Тригонометрический ряд

Определение. Тригонометрическим рядом называется ряд вида:

или, короче,

Действительные числа ai, bi называются коэффициентами тригонометрического ряда.

Если ряд представленного выше типа сходится, то его сумма представляет собой периодическую функцию с периодом 2, т.к. функции sinnx и cosnx также периодические функции с периодом 2.

Пусть тригонометрический ряд равномерно сходится на отрезке [-; ], а следовательно, и на любом отрезке в силу периодичности, и его сумма равна f(x).

Определим коэффициенты этого ряда.

Для решения этой задачи воспользуемся следующими равенствами:

Справедливость этих равенств вытекает из применения к подынтегральному выражению тригонометрических формул. Подробнее см. п. 3.4 курса.

Т.к. функция f(x) непрерывна на отрезке [-; ], то существует интеграл

Т акой результат получается в результате того, что .

Получаем:

Далее умножаем выражение разложения функции в ряд на cosnx и интегрируем в пределах от - до .

Отсюда получаем:

Аналогично умножаем выражение разложения функции в ряд на sinnx и интегрируем в пределах от - до .

Получаем:

Выражение для коэффициента а0 является частным случаем для выражения коэффициентов an.

Таким образом, если функция f(x) – любая периодическая функция периода 2, непрерывная на отрезке [-; ] или имеющая на этом отрезке конечное число точек разрыва первого рода, то коэффициенты

существуют и называются коэффициентами Фурье для функции f(x).

Определение. Рядом Фурье для функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4