logo search
Математический анализ_умм

Ряд Фурье по ортогональной системе функций

Определение. Функции (х) и (х), определенные на отрезке [a, b], называются ортогональными на этом отрезке, если

Определение. Последовательность функций 1(x), 2(x), …, n(x), непрерывных на отрезке [a, b], называется ортогональной системой функций на этом отрезке, если все функции попарно ортогональны.

Отметим, что ортогональность функций не подразумевает перпендикулярности графиков этих функций.

Определение. Система функций называется ортогональной и нормированной (ортонормированной), если

Определение. Рядом Фурье по ортогональной системе функций 1(x), 2(x), …,n(x) называется ряд вида:

коэффициенты которого определяются по формуле:

,

где f(x) = - сумма равномерно сходящегося на отрезке [a, b] ряда по ортогональной системе функций. f(x) – любая функция, непрерывная или имеющая конечное число точек разрыва первого рода на отрезке [a, b].

В случае ортонормированной системы функций коэффициенты определяются: