logo search
Математический анализ_умм

4.25. Интеграл Фурье

Пусть функция f(x) на каждом отрезке [-l,l], где l – любое число, кусочно – гладкая или кусочно – монотонная, кроме того, f(x) – абсолютно интегрируемая функция, т.е. сходится несобственный интеграл

Тогда функция f(x) разлагается в ряд Фурье:

Если подставить коэффициенты в формулу для f(x), получим:

Переходя к пределу при l, можно доказать, что и

Обозначим

При lun 0.