logo search
Математический анализ_умм

1.1. Числовая последовательность

Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность

x1, х2, …, хn = {xn}

Общий элемент последовательности является функцией от n.

xn = f(n)

Таким образом последовательность может рассматриваться как функция.

Задать последовательность можно различными способами – главное, чтобы был указан способ получения любого члена последовательности.

Пример. {xn} = {(-1)n} или {xn} = -1; 1; -1; 1; …

{xn} = {sinn/2} или {xn} = 1; 0; 1; 0; …

Для последовательностей можно определить следующие операции:

  1. Умножение последовательности на число m: m{xn} = {mxn}, т.е. mx1, mx2, …

  2. Сложение (вычитание) последовательностей: {xn}  {yn} = {xn  yn}.

  3. Произведение последовательностей: {xn}{yn} = {xnyn}.

  4. Частное последовательностей: при {yn}  0.