logo search
Математический анализ_умм

2.33. Производная функции, заданной параметрически

Пусть

Предположим, что эти функции имеют производные и функция x = (t) имеет обратную функцию t = Ф(х).

Тогда функция у = (t) может быть рассмотрена как сложная функция y = [Ф(х)].

т.к. Ф(х) – обратная функция, то

Окончательно получаем:

Таким образом, можно находить производную функции, не находя непосредственной зависимости у от х.

Пример. Найти производную функции

Способ 1: Выразим одну переменную через другую , тогда

Способ 2: Применим параметрическое задание данной кривой: .

x2 = a2cos2t;