2.1.2. Похідна і частинні похідні а. Похідна функції однієї змінної
Нехай задано функцію однієї змінної . Даючи арґументу x приріст і знаходячи відповідний приріст функції
( 4 )
в точці , ми знаходимо їх відношення
і переходимо до границі при .
Означення 1. Границя
, ( 5 )
тобто границя відношення приросту функції в точці і відповідного приросту арґументу Δx при прямуванні останнього до нуля, називається похід-ною функції в точці x0. Ми позначаємо похідну одним з поданих нижче спосо-бів
,
так що
( 6 )
Вищенаведені приклади дозволяють з"ясувати декілька сенсів похідної.
1. З формули (1) випливає, що швидкість зміни функції в точці - це похідна функції в цій точці,
( 7 )
2. З формули (2) випливає, що продуктивність праці фабрики в момент часу - це похідна функції , тобто похідна кількості виробленої фабрикою продукції, в цей момент,
( 8 )
3. З формули (3) випливає геометричний сенс похідної:
Кутовий коефіцієнт дотичної до графіка функції в його точці (рис. 1) – це похідна функції в точці ,
( 9 )
Рівняння дотичної M0T (з кутовим коефіцієнтом ) є
. ( 10 )
Нормаль до графіка функції в точці (рис. 2) має кутовий коефіцієнт
і таке рівняння
Fig. 2 . ( 11 ) Часто доводиться розглядати таку задачу: знайти кут φ, під яким перетинаються дві криві
та (рис. 3).
Розв"язок. Нехай - точка перетину кри- вих L1 і L2 , а M0T1, M0T2 – дотичні до L1, L2 в точці M0. Їх кутові коефіцієнти дорівнюють Рис. 3 , а отже
( 12 )
- Міністерство освіти і науки україни донецький національний технічний університет Косолапов ю.Ф. Математичний аналіз першого курсу частини 1 - 2
- Донецьк 2009
- Частина перша: вступ до аналізу. Диференціальне числення та його застосування математичний аналіз
- Підручники
- Збірники задач
- 1.1.2. Границя. Нескінченно малі і великі а. Границя функції в точці
- Б. Однобічні границі функції однієї змінної в точці
- В. Границя числової послідовності
- Г. Границя функції на плюс або мінус нескінченності
- Д. Нескінченно малі (нм)
- Е. Зв"язок між границями функцій і нескінченно малими
- Є. Нескінченно великі (нв)
- Ж. Співвідношення між нескінченно великими (нв) і нескінчен-но малими (нм)
- 1.1.3. Властивості границь
- А. Загальні властивості границь
- Б. Властивості нескінченно малих
- В. “Арифметичні” властивості границь
- Г. Властивості нескінченно великих
- 1.1.4.Стандартні границі а. Перша стандартна границя
- Б. Друга стандартна границя
- 1. (Третя стандартна границя) ( 3 )
- 2. (Четверта стандартна границя) ( 4 )
- 1.1.5. Відсотки в інвестиціях
- 1.2. Неперервність функцій
- 1.2.1. Неперервність функції в точці а. Основні означення
- Б. Властивості неперервних функцій
- В. Точки розриву
- 1.2.2. Властивості функції, неперервної на відрізку або в замкненій обмеженій області
- 1.2.3. Метод інтервалів та його узагальнення
- 2. Диференціальне числення
- 2.1.1. Задачі, які ведуть до поняття похідної а. Швидкість зміни функції
- Б. Продуктивність праці
- В. Дотична до кривої
- 2.1.2. Похідна і частинні похідні а. Похідна функції однієї змінної
- Б. Частинні похідні функції декількох змінних
- 2.1.3. Похідні основних елементарних функцій
- 2.1.4. Диференційовність і неперервність
- 2.1.5. Похідні суми, різниці, добутку, частки
- 1. (Похідна суми і різниці).
- 2. (Похідна добутку).
- 3. (Похідна частки).
- 2.2. Техніка диференціювання
- 2.2.1. Похідна складеної функції
- 2.2.2. Диференціювання неявної, оберненої та параметрично заданої функцій а. Випадок неявної функції
- Б. Випадок оберненої функції
- В. Випадок функції, заданої параметрично
- 2.2.3. Похідні вищих порядків
- 2.2.4. Диференціал
- 2.2.5. Похідна за напрямом. Ґрадієнт
- 2.2.6. Похідні в економіці. Еластичність а. Темп зміни функції
- Б. Граничні величини
- В. Еластичність функції
- Властивості еластичності
- 2.3. Основні теореми диференціального числення функцій однієї змінної
- 2.3.1. Теореми Ферма і Ролля
- 2.3.2. Теореми Лагранжа і Коші
- 2.3.3. Правило Лопіталя для розкриття невизначеностей
- А. Невизначеності типів
- Б. Деякі інші типи невизначеностей
- 2.3.4. Формули Тейлора і Маклорена а. Формули Тейлора і Маклорена для многочлена
- Б. Розвинення бінома (формула бінома Ньютона)
- В. Формули Тейлора і Маклорена для довільної функції однієї змінної
- Г. Формула Тейлора для функції декількох змінних
- 1. Вступ до математичного аналізу 5
- 1.1. Границя функції 5
- 1.2. Неперервність функцій 43
- 2. Диференціальне числення 60
- 2.2. Техніка диференціювання 71
- 2.3. Основні теореми диференціального числення функцій однієї змінної 97