1.2.2. Властивості функції, неперервної на відрізку або в замкненій обмеженій області
Теорема 4. Якщо функція однієї змінної неперервна на відрізку [a, b], то (див. рис. 5):
1) вона набуває найбільшого M і найменшого m значень на [a, b]: існують такі точки , що
, Рис. 5 (теорема Вейерштрасса1);
2) вона набуває всіх значень, які знаходяться між m і M (теорема Больцано2-Коші3 про проміжне значення); Рис. 6 3) якщо вона має значення різних знаків в двох точках відрізка, то вона хоча б один раз між цими точками набуває нульового значення.
Зауваження. Заключення теореми можуть не справджуватись, якщо функ-ція має принаймні одну точку розриву. Наприклад, функція, графік якої зобра-жено на рис. 6а, має розрив в точках a і b і не має ні найменшого, ні найбільшо-го значень. Функція з графіком, зображеним на рис. 6b, має точку розриву , набуває найбільшого M і найменшого m значень, але не набуває жодного про-міжного значення між c і d.
Відзначимо, нарешті, що функція, яка має графік, показаний на рис. 6c, має дві точки розриву a і і тим не менш перші два заключення теореми для неї справджуються. Це означає, що умови теореми є достатніми для заключень 1), 2), 3), але вони не є необхідними.
Аналогічні теореми є справедливими для функцій декількох змінних.
Означення 7. Об"єднання області та її границі називається замкненою областю,
.
Означення 8. Область на площині (або в просторі будь-якого виміру) називається обмеженою, якщо вона міститься всередині якогось кола (відповід-но якоїсь сфери) з центром в початку координат.
Теорема 5. Якщо функція декількох змінних неперервна в замкненій обмеженій області , то:
1) вона набуває в своїх найбільшого M і найменшого m значень;
2) вона набуває всіх значень, заключених між m і M;
3) якщо вона має різні знаки в двох точках області, то вона в ній принай-мні один раз набуває нульове значення.
Yandex.RTB R-A-252273-3
- Міністерство освіти і науки україни донецький національний технічний університет Косолапов ю.Ф. Математичний аналіз першого курсу частини 1 - 2
- Донецьк 2009
- Частина перша: вступ до аналізу. Диференціальне числення та його застосування математичний аналіз
- Підручники
- Збірники задач
- 1.1.2. Границя. Нескінченно малі і великі а. Границя функції в точці
- Б. Однобічні границі функції однієї змінної в точці
- В. Границя числової послідовності
- Г. Границя функції на плюс або мінус нескінченності
- Д. Нескінченно малі (нм)
- Е. Зв"язок між границями функцій і нескінченно малими
- Є. Нескінченно великі (нв)
- Ж. Співвідношення між нескінченно великими (нв) і нескінчен-но малими (нм)
- 1.1.3. Властивості границь
- А. Загальні властивості границь
- Б. Властивості нескінченно малих
- В. “Арифметичні” властивості границь
- Г. Властивості нескінченно великих
- 1.1.4.Стандартні границі а. Перша стандартна границя
- Б. Друга стандартна границя
- 1. (Третя стандартна границя) ( 3 )
- 2. (Четверта стандартна границя) ( 4 )
- 1.1.5. Відсотки в інвестиціях
- 1.2. Неперервність функцій
- 1.2.1. Неперервність функції в точці а. Основні означення
- Б. Властивості неперервних функцій
- В. Точки розриву
- 1.2.2. Властивості функції, неперервної на відрізку або в замкненій обмеженій області
- 1.2.3. Метод інтервалів та його узагальнення
- 2. Диференціальне числення
- 2.1.1. Задачі, які ведуть до поняття похідної а. Швидкість зміни функції
- Б. Продуктивність праці
- В. Дотична до кривої
- 2.1.2. Похідна і частинні похідні а. Похідна функції однієї змінної
- Б. Частинні похідні функції декількох змінних
- 2.1.3. Похідні основних елементарних функцій
- 2.1.4. Диференційовність і неперервність
- 2.1.5. Похідні суми, різниці, добутку, частки
- 1. (Похідна суми і різниці).
- 2. (Похідна добутку).
- 3. (Похідна частки).
- 2.2. Техніка диференціювання
- 2.2.1. Похідна складеної функції
- 2.2.2. Диференціювання неявної, оберненої та параметрично заданої функцій а. Випадок неявної функції
- Б. Випадок оберненої функції
- В. Випадок функції, заданої параметрично
- 2.2.3. Похідні вищих порядків
- 2.2.4. Диференціал
- 2.2.5. Похідна за напрямом. Ґрадієнт
- 2.2.6. Похідні в економіці. Еластичність а. Темп зміни функції
- Б. Граничні величини
- В. Еластичність функції
- Властивості еластичності
- 2.3. Основні теореми диференціального числення функцій однієї змінної
- 2.3.1. Теореми Ферма і Ролля
- 2.3.2. Теореми Лагранжа і Коші
- 2.3.3. Правило Лопіталя для розкриття невизначеностей
- А. Невизначеності типів
- Б. Деякі інші типи невизначеностей
- 2.3.4. Формули Тейлора і Маклорена а. Формули Тейлора і Маклорена для многочлена
- Б. Розвинення бінома (формула бінома Ньютона)
- В. Формули Тейлора і Маклорена для довільної функції однієї змінної
- Г. Формула Тейлора для функції декількох змінних
- 1. Вступ до математичного аналізу 5
- 1.1. Границя функції 5
- 1.2. Неперервність функцій 43
- 2. Диференціальне числення 60
- 2.2. Техніка диференціювання 71
- 2.3. Основні теореми диференціального числення функцій однієї змінної 97