Формула парабол (формула Симпсона или квадратурная формула) (Томас Симпсон (1710-1761)- английский математик)
Разделим отрезок интегрирования [a, b] на четное число отрезков (2m). Площадь криволинейной трапеции, ограниченной графиком функции f(x) заменим на площадь криволинейной трапеции, ограниченной параболой второй степени с осью симметрии, параллельной оси Оу и проходящей через точки кривой, со значениями f(x0), f(x1), f(x2).
Для каждой пары отрезков построим такую параболу.
у
0 х0 х1 х2 х3 х4 х
Уравнения этих парабол имеют вид Ax2 + Bx + C, где коэффициенты А, В, С могут быть легко найдены по трем точкам пересечения параболы с исходной кривой.
(1)
Обозначим .
Если принять х0 = -h, x1 = 0, x2 = h, то (2)
Тогда уравнения значений функции (1) имеют вид:
C учетом этого: .
Отсюда уравнение (2) примет вид:
Тогда
Складывая эти выражения, получаем формулу Симпсона:
Чем больше взять число m, тем более точное значение интеграла будет получено.
Пример. Вычислить приближенное значение определенного интеграла
с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей.
По формуле Симпсона получим:
m | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
x | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
f(x) | 2.828 | 3.873 | 4 | 4.123 | 4.899 | 6.557 | 8.944 | 11.874 | 15.232 | 18.947 | 22.978 |
Точное значение этого интеграла – 91.173.
Как видно, даже при сравнительно большом шаге разбиения точность полученного результата вполне удовлетворительная.
Для сравнения применим к этой же задаче формулу трапеций.
Формула трапеций дала менее точный результат по сравнению с формулой Симпсона.
Кроме вышеперечисленных способов, можно вычислить значение определенного интеграла с помощью разложения подинтегральной функции в степенной ряд.
Принцип этого метода состоит в том, чтобы заменить подинтегральную функцию по формуле Тейлора и почленно проинтегрировать полученную сумму.
Пример. С точностью до 0,001 вычислить интеграл
Т.к. интегрирование производится в окрестности точки х=0, то можно воспользоваться для разложения подинтегральной функции формулой Маклорена.
Разложение функции cosx имеет вид:
Зная разложение функции cosх легко найти функцию 1 – cosx:
В этой формуле суммирование производится по п от 1 до бесконечности, а в предыдущей – от 0 до бесконечности. Это – не ошибка, так получается в результате преобразования.
Теперь представим в виде ряда подинтегральное выражение.
Теперь представим наш интеграл в виде:
В следующем действии будет применена теорема о почленном интегрировании ряда. (Т.е. интеграл от суммы будет представлен в виде суммы интегралов членов ряда).
Вообще говоря, со строго теоретической точки зрения для применения этой теоремы надо доказать, что ряд сходится и, более того, сходится равномерно на отрезке интегрирования [0, 0,5]. Эти вопросы будут подробно рассмотрены позже (См. Действия со степенными рядами.) Отметим лишь, что в нашем случае подобное действие справедливо хотя бы по свойствам определенного интеграла (интеграл от суммы равен сумме интегралов).
Итак:
Итого, получаем:
Как видно, абсолютная величина членов ряда очень быстро уменьшается, и требуемая точность достигается уже при третьем члене разложения.
Для справки: Точное (вернее – более точное) значение этого интеграла: 0,2482725418…
- Тема 1. Введение в математический анализ 9
- Тема 2. Дифференциальное исчисление функции одной переменной 34
- Тема 3. Интегральное исчисление 84
- Тема 4. Ряды 144
- Требования к результатам освоения дисциплины
- Содержание дисциплины
- Тема 1. Введение в математический анализ.
- Тема 2. Дифференциальное исчисление функций одной переменной.
- Тема 3. Интегральное исчисление.
- Тема 4. Ряды.
- Формы контроля
- Литература
- Курс лекций тема 1. Введение в математический анализ
- 1.1. Числовая последовательность
- 1.2. Ограниченные и неограниченные последовательности
- 1.3. Предел
- 1.4. Монотонные последовательности
- 1.5. Число е
- 1.6. Связь натурального и десятичного логарифмов
- 1.7. Предел функции в точке. Односторонние пределы
- 1.8. Предел функции при стремлении аргумента к бесконечности
- 1.9. Основные теоремы о пределах
- 1.10. Ограниченные функции
- 1.11. Бесконечно малые функции
- 1.12. Бесконечно большие функции и их связь с бесконечно малыми
- 1.13. Сравнение бесконечно малых функций
- 1.14. Свойства эквивалентных бесконечно малых функций
- 1.15. Некоторые замечательные пределы
- 1.16. Непрерывность функции в точке
- 1.17. Свойства непрерывных функций
- 1.18. Непрерывность некоторых элементарных функций
- 1.19. Точки разрыва и их классификация
- 1.20. Непрерывность функции на интервале и на отрезке
- 1.21. Свойства функций, непрерывных на отрезке
- 1.22. Комплексные числа
- 1.23. Тригонометрическая форма числа
- 1.24. Действия с комплексными числами
- 1.25. Показательная форма комплексного числа
- Тема 2. Дифференциальное исчисление функции одной переменной
- 2.1. Производная функции, ее геометрический и физический смысл
- 2.2. Односторонние производные функции в точке
- 2.7. Производная показательно-степенной функции
- 2.8. Производная обратных функций
- 2.9. Дифференциал функции
- 2.10. Геометрический смысл дифференциала
- 2.11. Свойства дифференциала
- 2.12. Дифференциал сложной функции. Инвариантная форма записи дифференциала
- 2.13. Формула Тейлора. Формула Лагранжа. Формула Маклорена Тейлор (1685-1731) – английский математик
- Колин Маклорен (1698-1746) шотландский математик.
- 2.14. Представление некоторых элементарных функций по формуле Тейлора. Бином Ньютона
- 2.15. Применение дифференциала к приближенным вычислениям
- 2.16. Теорема Ролля
- 2.17. Теорема Лагранжа
- 2.18. Теорема Коши
- 2.19. Раскрытие неопределенностей. Правило Лопиталя
- 2.20. Производные и дифференциалы высших порядков
- 2.21. Общие правила нахождения высших производных
- 2.22. Возрастание и убывание функций
- 2.23. Точки экстремума. Критические точки. Достаточные условия экстремума
- 2.24. Исследование функции на экстремум с помощью производных высших порядков
- 2.25. Выпуклость и вогнутость кривой. Точки перегиба
- 2.26. Асимптоты
- Вертикальные асимптоты
- Наклонные асимптоты
- 2.27. Схема исследования функций
- 2.28. Векторная функция скалярного аргумента. Уравнение касательной к кривой
- 2.29. Свойства производной векторной функции скалярного аргумента
- 2.30. Уравнение нормальной плоскости
- 2.31. Параметрическое задание функции
- 2.32. Уравнения некоторых типов кривых в параметрической форме о кружность
- Циклоида
- Астроида
- 2.33. Производная функции, заданной параметрически
- 2.34. Кривизна плоской кривой
- Свойства эволюты
- 2.35. Кривизна пространственной кривой
- О формулах Френе
- 3.4. Методы интегрирования. Интегрирование различных функций
- Непосредственное интегрирование
- Способ подстановки (замены переменных)
- Интегрирование по частям
- Интегрирование элементарных дробей
- Интегрирование рациональных функций. Интегрирование рациональных дробей.
- Интегрирование некоторых тригонометрических функций
- Интегрирование некоторых иррациональных функций
- 1 Способ. Тригонометрическая подстановка.
- 3 Способ. Метод неопределенных коэффициентов.
- Несколько примеров интегралов, не выражающихся через элементарные функции
- 3.5. Определенный интеграл и его свойства
- Свойства определенного интеграла
- 3.6. Приемы и методы вычисления определенного интеграла
- Замена переменных
- Интегрирование по частям
- Приближенное вычисление определенного интеграла
- Формула прямоугольников
- Формула трапеций
- Формула парабол (формула Симпсона или квадратурная формула) (Томас Симпсон (1710-1761)- английский математик)
- 3.7. Несобственные интегралы
- 3.8. Интеграл от разрывной функции
- 3.9. Геометрические приложения определенного интеграла Вычисление площадей плоских фигур
- Нахождение площади криволинейного сектора
- Вычисление длины дуги кривой
- 3.8. Вычисление объемов тел Вычисление объема тела по известным площадям его параллельных сечений.
- Объем тел вращения
- 3.9. Площадь поверхности тела вращения
- 3.10. Функции нескольких переменных
- 3.11. Производные и дифференциалы функций нескольких переменных
- 3.12. Полное приращение и полный дифференциал
- 3.12. Геометрический смысл полного дифференциала. Касательная плоскость и нормаль к поверхности
- 3.13. Приближенные вычисления с помощью полного дифференциала
- 3.14. Частные производные высших порядков
- 3.15. Экстремум функции нескольких переменных
- Условный экстремум
- 3.16. Производная по направлению
- 3.17. Градиент
- Связь градиента с производной по направлению
- 3.18. Двойные интегралы
- Условия существования двойного интеграла
- Свойства двойного интеграла
- Вычисление двойного интеграла
- Замена переменных в двойном интеграле
- Двойной интеграл в полярных координатах
- 3.19. Тройной интеграл
- Замена переменных в тройном интеграле
- Цилиндрическая система координат
- Сферическая система координат
- 3.20. Геометрические и физические приложения кратных интегралов
- 3) Вычисление объемов тел.
- Тема 4. Ряды
- 4.1. Основные определения
- 4.2. Свойства рядов
- 4.3. Критерий Коши
- 4.4. Ряды с неотрицательными членами
- 4.5. Признак сравнения рядов с неотрицательными членами
- 4.6. Признак Даламбера
- 4.7. Предельный признак Даламбера
- 4.8. Признак Коши (радикальный признак)
- 4.9. Интегральный признак Коши
- 4.10. Знакопеременные ряды. Знакочередующиеся ряды
- 4.11. Признак Лейбница
- 4.12. Абсолютная и условная сходимость рядов
- 4.13. Признаки Даламбера и Коши для знакопеременных рядов
- 4.14. Свойства абсолютно сходящихся рядов
- 4.15. Функциональные последовательности
- 4.16. Функциональные ряды
- 4.17. Критерий Коши равномерной сходимости ряда. Признак равномерной сходимости Вейерштрасса
- 4.18. Свойства равномерно сходящихся рядов
- 4.19. Степенные ряды
- 4.20. Теоремы Абеля
- 4.21. Действия со степенными рядами
- 1) Интегрирование степенных рядов.
- 2) Дифференцирование степенных рядов.
- 3) Сложение, вычитание, умножение и деление степенных рядов.
- 4.22. Разложение функций в степенные ряды
- Если применить к той же функции формулу Маклорена
- 4.23. Решение дифференциальных уравнений с помощью степенных рядов
- 4.24. Ряды Фурье
- Тригонометрический ряд
- Достаточные признаки разложимости в ряд Фурье
- Разложение в ряд Фурье непериодической функции.
- Ряд Фурье для четных и нечетных функций
- Ряды Фурье для функций любого периода
- Ряд Фурье по ортогональной системе функций
- 4.25. Интеграл Фурье
- Можно доказать, что предел суммы, стоящий в правой части равенства равен интегралу
- 4.26. Преобразование Фурье
- 4.27. Элементы теории функций комплексного переменного
- 4.28. Свойства функций комплексного переменного
- 4.29. Основные трансцендентные функции
- 4.30. Производная функций комплексного переменного
- 4.31. Условия Коши – Римана
- 4.32. Интегрирование функций комплексной переменной
- 4.33. Теорема Коши. Интегральная формула Коши
- Интегральная формула Коши
- 4.34. Ряды Тейлора и Лорана. Изолированные особые точки
- 4.35. Теорема о вычетах. Вычисление интегралов с помощью вычетов
- Образцы решения типовых заданий
- Блок контроля контрольная работа
- Варианты заданий
- Экзаменационная работа
- Экзаменационные вопросы
- Экзаменационные практические задания
- Список рекомендуемой литературы