logo search
Математический анализ_умм

2.24. Исследование функции на экстремум с помощью производных высших порядков

Пусть в точке х = х1 f(x1) = 0 и f(x1) существует и непрерывна в некоторой окрестности точки х1.

Теорема. Если f(x1) = 0, то функция f(x) в точке х = х1 имеет максимум, если f(x1)<0 и минимум, если f(x1)>0.

Доказательство.

Пусть f(x1) = 0 и f(x1)<0. Т.к. функция f(x) непрерывна, то f(x1) будет отрицательной и в некоторой малой окрестности точки х1.

Т.к. f(x) = (f(x)) < 0, то f(x) убывает на отрезке, содержащем точку х1, но f(x1)=0, т.е. f(x) > 0 при х<x1 и f(x) < 0 при x>x1. Это и означает, что при переходе через точку х = х1 производная f(x) меняет знак с “+” на “-“, т.е. в этой точке функция f(x) имеет максимум.

Для случая минимума функции теорема доказывается аналогично.

Если f(x) = 0, то характер критической точки неизвестен. Для его определения требуется дальнейшее исследование.