logo search
shpory_matem_VSYe

47. Ряд фурье для четных и нечетных функций

Пусть f(x) - четная функция с периодом 2L, удовлетворяющая условию f(-x) = f(x) .

Тогда для коэффициентов ее ряда Фурье находим формулы:

=

=

= 0 , где n=1,2, ...

Таким образом, в ряде Фурье для четной функции отсутствуют члены с синусами, и ряд Фурье для четной функции с периодом 2L выглядит так:

Пусть теперь f(x) - нечетная функция с периодом 2L, удовлетворяющая условию f(-x) = - f(x).

Тогда для коэффициентов ее ряда Фурье находим формулы:

, где n=1,2, ...

Таким образом, в ряде Фурье для нечетной функции отсутствует свободный член и члены с косинусами, и ряд Фурье для нечетной функции с периодом 2L выглядит так:

Если функция f(x) разлагается в тригонометрический ряд Фурье на промежутке  то 

, где  ,

,

,

Если f(x) разлагается в тригонометрический ряд Фурье на [0,L], то доопределив заданную функцию f(x) соответствующим образом на [-L,0]; далее периодически продолжив на (T=2L), получим новую функцию, которую разлагаем в тригонометрический ряд Фурье.

Для разложения в ряд Фурье непериодической функции, заданной на конечном произвольном промежутке [a,b], надо : доопределить на [b,a+2L] и периодически продолжить, либо доопределить на [b-2L,a] и периодически продолжить.