35. Знакочередующиеся ряды. Теорема Лейбница
Знакочередующиеся ряды
Переходя к рассмотрению рядов, члены которых уже не обязательно положительны, остановимся сначала на одном важном частном типе этих рядов - на рядах знакочередующихся, теория которых сравнительно проста.
Ряд называется знакочередующимся, если любые два его соседних члена суть числа разных знаков.
Несколько изменяя употреблявшуюся выше символику, будем обозначать через an не сам общий член ряда, а его абсолютную величину. Тогда, предполагая для определенности, что первый член знакочередующегося ряда положителен, мы сможем записать этот ряд в форме*
a1 - a2 + a3 - a4 + a5 - ... (36)
Теорема Лейбница. Если абсолютная величина общего члена знакочередующегося ряда убывает и стремится к нулю, то этот ряд сходится.
Действительно, допустим, что ряд (36) таков, что
a1 > a2 > a3 > a4 > ..., (37)
(38)
Образуем частичные суммы S2n:
S2 = (a1 - a2),
S4 = (a1 - a2) + (a3 - a4),
S6 = (a1 - a2) + (a3 - a4) + (a5 - a6),
. . . . . . . . . . . . . .
Благодаря (37), все скобки положительны. Значит,
S2 < S4 < S6 < ...
Иначе говоря, последовательность {S2n} возрастает. С другой стороны,
S2n = a1 - (a2 - a3) - (a4 - a5) - ... - (a2n-2 - a2n-1) - a2n,
откуда ясно, что
S2n < a1.
Как известно, при этих условиях существует конечный предел
Но
S2n+1 = S2n + a2n+1,
откуда в связи с (38) вытекает, что сумма S2n+1 с возрастанием n также стремится к S. Итак, при достаточно больших n сумма Sn будет сколь угодно близка к Sнезависимо от четности n. Иначе говоря,
чем и доказана теорема.
Заметим, что теорема перестает быть верной, если отбросить условие убывания an. Например, знакочередующийся ряд
как легко видеть, расходится
Yandex.RTB R-A-252273-3
- 1.Задачи, приводящие к ду
- 2.Основные понятия теории ду
- 3.Задачи Коши. Теорема существования и единственности решения
- Теорема существования и единственности решения задачи Коши для номального уравнения первого порядка.
- 4.Ду первого порядка. Общее и частное решение
- 5.Уравнение с разделенними и разделяющимися переменными
- 6.Однородное уравнение первого порядка
- 7.Линейные однородные ду. Решение уравнения
- 8.Уравнение Бернулли
- 9.Уравнение в полных дифференциалах
- 10. Особые решения ду 1 порядка
- 11.Ду высших порядков. Общее и частное решение
- 16.Линейные ду 2го порядка с постоянными коэффицентаки
- 17.Линейное ду п-го порядка с постоянными коэффициентаки
- 18.Неоднородное линейное уравнение 2го порядка
- 19.Метод вариации производных постоянных
- 20.Неоднородные линейные уравнения высших порядков
- 21.Системы ду. Нормальная система
- 22.Геометрический смысл решения системы ду
- 23.Интегрирование систем ду
- 24.Системы ду с постоянными коэффициентами
- 26.Приближенные метоыд решения дифференциальных уровнений
- 27.Понятие устойчивости и асимптотической устойчивости по Ляпунову
- 28.Типы точек покоя
- 29.Числовой ряд сумма ряда
- 30.Необходимые признаки сходимости ряда
- 31.Сравнение рядов с положительными членами
- 32.Признаки сравнения. Признак Даламбера.
- 33. Признак сравнения. Признак коши
- 34. Интегральные сходимости знакопостоянных рядов
- 35. Знакочередующиеся ряды. Теорема Лейбница
- 36. Знакопеременный ряд абсолютная и условная сходимость
- 37 Функциональный ряд. Свойство равномерно сходящихся функциональных рядов
- 38. Мажорируемый ряд.
- 39. Степенной ряд. Теорема Абеля
- 40. Интервал и радиус сходимости степенного ряда
- 41. Действие над степенными рядами (свойства степенных рядов)
- 42. Ряды Тейлора и Маклорена.
- 45. Ряды Фурье. Вычисление коэффициентов ряда фурье
- 46. Разложение в ряд Фурье непериодической функции
- 47. Ряд фурье для четных и нечетных функций
- 48. Ряд фурье по ортогональным системам функций
- 49. Интеграл Фурье
- 50. Преобразование Фурье
- 51. Функции комплексного переменного
- 52. Дифф-ие ф-ии комплексного переменного. Аналитические функции.
- 53. Условие Коши-Римана
- 54.Конформные отображения
- 55.Интеграл по комплексному переменному
- 56.Теорема Коши. Интеграл Коши
- 58.Ряд Лорана
- 57.Степенные ряды. Ряд Тейлора и Маклорена.
- 59.Классификация изолированных особых точек однозначной функции
- 61.Вычисление вычетов
- 62.Вычет функции относительно бесконечно удаленной точки
- 63.Основная теорема о вычетах
- 64.Вычисление интегралов с помощью вычетов
- 65.Оригинал и изображение по Лапласу
- 66.Свойства преобразований по Лапласу
- 67.Теорема о свертке
- 68.Нахождение оригинала по изображению
- 69.Теоремы разложения
- 70.Операционный метод решения ду и систем ду