logo
shpory_matem_VSYe

57.Степенные ряды. Ряд Тейлора и Маклорена.

Ряд Маклорена (=Макларена) это ряд Тейлора в окрестности точки а=0.

Оказывается, большинство практически встречающихся математических функций могут быть с любой точностью представлены в окрестностях некоторой точки в виде степенных рядов, содержащих степени переменной в порядке возрастания. Например, в окрестности точки х=0:

При использовании рядов, называемых рядами Маклорена (=Макларена), смешанные функции, содержащие, скажем, алгебраические, тригонометрические и экспоненциальные функции, могут быть выражены в виде чисто алгебраических функций. С помощью рядов зачастую можно быстро осуществить дифференцирование и интегрирование.

Теорема Маклорена (ряд Маклорена (=Макларена)) имеет вид:

1)  , где f(x) - функция, имеющая при а=0 производные всех порядков. Rn - остаточный член в ряде Маклорена (=Макларена) (Тейлора при а=0)определяется выражением 

2)

k-тый коэффициент (при хk) ряда определяется формулой

Ряды Маклорена являются частным случаем рядов Тейлора.

Ряд Тейлора. Пусть функция w = f(z) аналитична в области D, z0∈ D. Обозначим L окружность с центром в z0, принадлежащую области D вместе с ограниченным ею кругом. Тогда для любой точки z, лежащей внутри L,  . Представим множитель   в виде суммы сходящейся геометрической прогрессии:  (так как | z – z0| < | t – z0| , то  )  , и ряд сходится абсолютно, поэтому его можно почленно интегрировать:    , так как  . Итак,  .          Ряд в правой части этого равенства - ряд Тейлора функции f(z). Этот ряд абсолютно сходится внутри контура L, а в качестве L можно взять любую окружность, которая не выходит за пределы областиD. Доказана          Теорема о разложении функции в ряд Тейлора. Если функция w = f(z) аналитична в области D, z0 ∈ D, то функция f(z)может быть разложена в ряд Тейлора по степеням (z – z0)n. Этот ряд абсолютно сходится к f(z) внутри круга | z – z0| < r, где r - расстояние от z0 до границы области D (до ближайшей к z0 точке, в которой функция теряет аналитичность). Это разложение единственно.  Единственность разложения следует из того, что коэффициенты ряда однозначно выражаются через производные функции.