logo
shpory_matem_VSYe

23.Интегрирование систем ду

Системы дифференциальных уравнений n–го порядка можно решать сведением к уравнению n–го порядка. Такой метод решения систем называетсяметодом исключения.

Рассмотрим, например, нормальную систему дифференциальных уравнений 2 –го порядка

Исключим функцию y2. Для этого сначала выразим y2 через x и y1 из первого уравнения системы , затем продифференцируем по x первое уравнение системы, заменяя y2 полученным для него выражением, а производную y2 − правой частью второго уравнения системы:

Получили обыкновенное дифференциальное уравнение 2 –го порядка

 

Таким же образом решают методом исключения произвольные системы n–го порядка: дифференцируют уравнения системы и, последовательно исключая функции y2, ..., yn и их производные, сводят систему к одному дифференциальному уравнению n–го порядка относительно y1.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4