58.Ряд Лорана
Ряд Лорана. Пусть функция f(z) аналитична в кольце ρ ≤ |z − z0| ≤ R. Тогда для любой точки этого кольца ; при этом окружности проходятся так, что область остаётся слева (следствие 3 раздела 19.7.2. Интегральная формула Коши). Изменим в интеграле по внутренней окружности направление обхода на противоположное: . Интеграл по внешней окружности преобразуем так, как и при выводе формулы Тейлора: (так как | z – z0| < | t – z0| , то ) , и ряд сходится абсолютно, поэтому его можно почленно интегрировать: , где . Интеграл по внутренней окружности преобразуем аналогично, учитывая только, что на Lρ | t – z0| < | z – z0| : . И здесь ряд сходится абсолютно, поэтому его можно почленно интегрировать: ,г де . Переобозначим n → −n, тогда форма коэффициентов ряда для Lρ совпадёт с формой коэффициентов ряда для LR: поэтому окончательно для интеграла по Lρ получим . Докажем, что и контур для вычисления коэффициентов может быть взят один и тот же. Действительно, пусть Γ - кусочно-гладкий контур, расположенный в кольце ρ ≤ |z − z0| ≤ R, и точка z0 расположена внутри этого контура. По теореме Коши для многосвязной области ; , поэтому для любого n , и . Этот ряд (содержащий и положительные, и отрицательные степени (z – z0), называется рядом Лорана функции f(z). Его часть, содержащая неотрицательные степени ( ), называется правильной; часть, содержащая отрицательные степени ( ), называется главной. Правильная часть, по самому своему построению, сходится в круге | z – z0| ≤ R, главная - во внешности круга | z – z0| ≥ ρ, поэтому весь ряд сходится в пересечении этих областей, т.е. в кольце ρ ≤ | z – z0| ≤ R. Так же, как и для ряда Тейлора, разложение в ряд Лорана единственно. Еще раз подчеркнем, что в ряд Лорана раскладывается функция, аналитическая в кольце, и ширина этого кольца определяется областью аналитичности функции, т.е. разложение теряет смысл там, где функция теряет аналитичность. Рассмотрим
Yandex.RTB R-A-252273-3
- 1.Задачи, приводящие к ду
- 2.Основные понятия теории ду
- 3.Задачи Коши. Теорема существования и единственности решения
- Теорема существования и единственности решения задачи Коши для номального уравнения первого порядка.
- 4.Ду первого порядка. Общее и частное решение
- 5.Уравнение с разделенними и разделяющимися переменными
- 6.Однородное уравнение первого порядка
- 7.Линейные однородные ду. Решение уравнения
- 8.Уравнение Бернулли
- 9.Уравнение в полных дифференциалах
- 10. Особые решения ду 1 порядка
- 11.Ду высших порядков. Общее и частное решение
- 16.Линейные ду 2го порядка с постоянными коэффицентаки
- 17.Линейное ду п-го порядка с постоянными коэффициентаки
- 18.Неоднородное линейное уравнение 2го порядка
- 19.Метод вариации производных постоянных
- 20.Неоднородные линейные уравнения высших порядков
- 21.Системы ду. Нормальная система
- 22.Геометрический смысл решения системы ду
- 23.Интегрирование систем ду
- 24.Системы ду с постоянными коэффициентами
- 26.Приближенные метоыд решения дифференциальных уровнений
- 27.Понятие устойчивости и асимптотической устойчивости по Ляпунову
- 28.Типы точек покоя
- 29.Числовой ряд сумма ряда
- 30.Необходимые признаки сходимости ряда
- 31.Сравнение рядов с положительными членами
- 32.Признаки сравнения. Признак Даламбера.
- 33. Признак сравнения. Признак коши
- 34. Интегральные сходимости знакопостоянных рядов
- 35. Знакочередующиеся ряды. Теорема Лейбница
- 36. Знакопеременный ряд абсолютная и условная сходимость
- 37 Функциональный ряд. Свойство равномерно сходящихся функциональных рядов
- 38. Мажорируемый ряд.
- 39. Степенной ряд. Теорема Абеля
- 40. Интервал и радиус сходимости степенного ряда
- 41. Действие над степенными рядами (свойства степенных рядов)
- 42. Ряды Тейлора и Маклорена.
- 45. Ряды Фурье. Вычисление коэффициентов ряда фурье
- 46. Разложение в ряд Фурье непериодической функции
- 47. Ряд фурье для четных и нечетных функций
- 48. Ряд фурье по ортогональным системам функций
- 49. Интеграл Фурье
- 50. Преобразование Фурье
- 51. Функции комплексного переменного
- 52. Дифф-ие ф-ии комплексного переменного. Аналитические функции.
- 53. Условие Коши-Римана
- 54.Конформные отображения
- 55.Интеграл по комплексному переменному
- 56.Теорема Коши. Интеграл Коши
- 58.Ряд Лорана
- 57.Степенные ряды. Ряд Тейлора и Маклорена.
- 59.Классификация изолированных особых точек однозначной функции
- 61.Вычисление вычетов
- 62.Вычет функции относительно бесконечно удаленной точки
- 63.Основная теорема о вычетах
- 64.Вычисление интегралов с помощью вычетов
- 65.Оригинал и изображение по Лапласу
- 66.Свойства преобразований по Лапласу
- 67.Теорема о свертке
- 68.Нахождение оригинала по изображению
- 69.Теоремы разложения
- 70.Операционный метод решения ду и систем ду