4.Ду первого порядка. Общее и частное решение
Простейшие дифференциальные уравнения первого порядка — класс дифференциальных уравнений первого порядка, наиболее легко поддающихся решению и исследованию. К нему относятся уравнения в полных дифференциалах, уравнения с разделяющимися переменными, однородные уравнения первого порядка и линейные уравнения первого порядка. Все эти уравнения можно проинтегрировать в конечном виде.
Отправной точкой изложения будет служить дифференциальное уравнение первого порядка, записанное в т. н. симметричной форме:
где функции P(t,x) и Q(t,x) определены и непрерывны в некоторой области
Уравнения в полных дифференциалах
Если в уравнении (1) левая часть представляет собой полный дифференциал, то есть , то такое уравнение называется уравнением в полных дифференциалах (частный случай так называемого пфаффова уравнения). Интегральные кривые такого уравнения суть линии уровней функции , т.е. определяются уравнением при всевозможных значениях произвольной постоянной .
Если в области выполнено условие , то общее решение уравнения (1) определяется из уравнения как неявная функция . Через каждую точку области проходит единственная интегральная кривая уравнения (1).
Если рассматриваемая область односвязна, а производные также непрерывны в , то для того, чтобы (1) было уравнением в полных дифференциалах, необходимо и достаточно выполнения условия
Частным решением уравнения (1) на интервале (a, b) (конечном или бесконечном) называется любая n раз дифференцируемая функция , удовлетворяющая этому уравнению, т.е. обращающая уравнение на этом интервале в тождество. Так, функция y(x) = ex + x обращает уравнение : y(4) – y + x = 0 в тождество на всей числовой оси (y(4)(x) = ex; ex –(ex +x) + x = 0), т.е. является частным решением этого уравнения. Любое уравнение порядка имеет множество частных решений (частным решением приведённого уравнения является и функция y(x) = sin(x) + x). Процедуру решения дифференциального уравнения часто называют интегрированием уравнения, при этом интегрировать приходится в общем случае ровно n раз, и при каждом интегрировании в решение входит очередная произвольная постоянная. Опр. Общим решением (общим интегралом) уравнения (1) называется такое соотношение
; | (2) |
что: 1. Любое решение (2) относительно y (для набора постоянных C1, C2, …, Cn из некоторой области n-мерного пространства) - частное решение уравнения (1); 2. Любое частное решение уравнения (1) может быть получено из (2) при некотором наборе постоянных C1, C2, …, Cn. Мы будем в основном рассматривать дифференциальные уравнения в форме, разрешённой относительно старшей производной:
; | (3) |
и получать общее решение в форме
; | (4) |
решённой относительно неизвестной функции.
Yandex.RTB R-A-252273-3- 1.Задачи, приводящие к ду
- 2.Основные понятия теории ду
- 3.Задачи Коши. Теорема существования и единственности решения
- Теорема существования и единственности решения задачи Коши для номального уравнения первого порядка.
- 4.Ду первого порядка. Общее и частное решение
- 5.Уравнение с разделенними и разделяющимися переменными
- 6.Однородное уравнение первого порядка
- 7.Линейные однородные ду. Решение уравнения
- 8.Уравнение Бернулли
- 9.Уравнение в полных дифференциалах
- 10. Особые решения ду 1 порядка
- 11.Ду высших порядков. Общее и частное решение
- 16.Линейные ду 2го порядка с постоянными коэффицентаки
- 17.Линейное ду п-го порядка с постоянными коэффициентаки
- 18.Неоднородное линейное уравнение 2го порядка
- 19.Метод вариации производных постоянных
- 20.Неоднородные линейные уравнения высших порядков
- 21.Системы ду. Нормальная система
- 22.Геометрический смысл решения системы ду
- 23.Интегрирование систем ду
- 24.Системы ду с постоянными коэффициентами
- 26.Приближенные метоыд решения дифференциальных уровнений
- 27.Понятие устойчивости и асимптотической устойчивости по Ляпунову
- 28.Типы точек покоя
- 29.Числовой ряд сумма ряда
- 30.Необходимые признаки сходимости ряда
- 31.Сравнение рядов с положительными членами
- 32.Признаки сравнения. Признак Даламбера.
- 33. Признак сравнения. Признак коши
- 34. Интегральные сходимости знакопостоянных рядов
- 35. Знакочередующиеся ряды. Теорема Лейбница
- 36. Знакопеременный ряд абсолютная и условная сходимость
- 37 Функциональный ряд. Свойство равномерно сходящихся функциональных рядов
- 38. Мажорируемый ряд.
- 39. Степенной ряд. Теорема Абеля
- 40. Интервал и радиус сходимости степенного ряда
- 41. Действие над степенными рядами (свойства степенных рядов)
- 42. Ряды Тейлора и Маклорена.
- 45. Ряды Фурье. Вычисление коэффициентов ряда фурье
- 46. Разложение в ряд Фурье непериодической функции
- 47. Ряд фурье для четных и нечетных функций
- 48. Ряд фурье по ортогональным системам функций
- 49. Интеграл Фурье
- 50. Преобразование Фурье
- 51. Функции комплексного переменного
- 52. Дифф-ие ф-ии комплексного переменного. Аналитические функции.
- 53. Условие Коши-Римана
- 54.Конформные отображения
- 55.Интеграл по комплексному переменному
- 56.Теорема Коши. Интеграл Коши
- 58.Ряд Лорана
- 57.Степенные ряды. Ряд Тейлора и Маклорена.
- 59.Классификация изолированных особых точек однозначной функции
- 61.Вычисление вычетов
- 62.Вычет функции относительно бесконечно удаленной точки
- 63.Основная теорема о вычетах
- 64.Вычисление интегралов с помощью вычетов
- 65.Оригинал и изображение по Лапласу
- 66.Свойства преобразований по Лапласу
- 67.Теорема о свертке
- 68.Нахождение оригинала по изображению
- 69.Теоремы разложения
- 70.Операционный метод решения ду и систем ду