11.Ду высших порядков. Общее и частное решение
Основные понятия
Многие задачи математики, механики, электротехники и других технических наук приводят к линейным дифференциальным уравнениям. Уравнение вида
где bo(x) ≠ 0, b1(x),..., bn(x), g(x) - заданные функции (от х), называется линейным ДУ n-го порядка.
Оно содержит искомую функцию у и все ее производные лишь в первой степени. Функции bo(x), b1(x),..., bn(x) называются коэффициентами уравнения (3.11), а функция g(x) - его свободным членом.
Если свободный член g(x)=0, то уравнение (3.11) называется линейным однородным уравнением; если g(x) ≠ 0, то уравнение (3.11) называется неоднородным.
Разделив уравнение (3.11) на bo(x) ≠ 0 и обозначив
запишем уравнение (3.11) в виде приведенного:
Далее будем рассматривать линейные ДУ вида (3.12) и считать, что коэффициенты и свободный член уравнения (3.12) являются непрерывными функциями (на некотором интервале (а;b)). При этих условиях справедлива теорема существования и единственности решения ДУ (3.12) (см. теорему. 3.1).
12.Уравнение вида
Найти общий интеграл этого уравнения. Проинтегрируем по х все части, принимая во внимание
-любое фиксированное значение
-постоянная интегрирований получаем:
Чтобы найти часное решение, удовлетв начальному условиям, достаточно положить:
13.Некоторые типы ДУ приводящие к уравнениям первого порядка
14.Линейное однородное уравнение. Свойства. Определитель Вронского
15.Формула Лиувиля
Теорема 14.5.6.1. Определитель Вронского системы y1(x), y2(x), …, yn(x) решений однородного уравнения удовлетворяет уравнению где p1(x) - коэффициент при n - 1 производной.
Док-во. Докажем эту теорему для уравнения второго порядка Пусть y1(x), y2(x) - частные решения этого уравнения, тогда , . Так как y1(x), y2(x) - решения уравнения, то ,
. Умножим первое из этих уравнений на - y2(x), второе - на y1(x) и сложим:
В первой из квадратных скобок стоит W(x), во второй - , поэтому , что и требовалось доказать.
Для доказательства этой теоремы в общей случае надо знать правило дифференцирования функциональных определителей: производная определителя n-го порядка равна сумме n определителей, которые получаются из исходного определителя построчным дифференцированием. Для определителя Вронского
так как первые n - 1 определитель содержат равные строки и равны нулю. Каждая из функций y1(x), y2(x), …, yn(x) удовлетворяет уравнению поэтому, поставив эти выражения в последнюю строку и пользуясь свойствами определителей, получим
т.е. .
Решим это уравнение относительно W(x). Функция W(x) = 0 является решением этого уравнения; если то Интегрируем последнее выражение в пределах от x0 до x: (Мы отбросили знак модуля у дроби, так как W(x) - непрерывная функция, не обращающаяся в нуль, поэтому значения W(x) и W(x0) всегда имеют один знак). Окончательно . (28)
Формула (28)называется формулой Лиувилля. Из неё также следуют результаты предыдущих разделов: если W(x0) = 0, то ; если , то ни в одной точке интервала (a, b).
Yandex.RTB R-A-252273-3
- 1.Задачи, приводящие к ду
- 2.Основные понятия теории ду
- 3.Задачи Коши. Теорема существования и единственности решения
- Теорема существования и единственности решения задачи Коши для номального уравнения первого порядка.
- 4.Ду первого порядка. Общее и частное решение
- 5.Уравнение с разделенними и разделяющимися переменными
- 6.Однородное уравнение первого порядка
- 7.Линейные однородные ду. Решение уравнения
- 8.Уравнение Бернулли
- 9.Уравнение в полных дифференциалах
- 10. Особые решения ду 1 порядка
- 11.Ду высших порядков. Общее и частное решение
- 16.Линейные ду 2го порядка с постоянными коэффицентаки
- 17.Линейное ду п-го порядка с постоянными коэффициентаки
- 18.Неоднородное линейное уравнение 2го порядка
- 19.Метод вариации производных постоянных
- 20.Неоднородные линейные уравнения высших порядков
- 21.Системы ду. Нормальная система
- 22.Геометрический смысл решения системы ду
- 23.Интегрирование систем ду
- 24.Системы ду с постоянными коэффициентами
- 26.Приближенные метоыд решения дифференциальных уровнений
- 27.Понятие устойчивости и асимптотической устойчивости по Ляпунову
- 28.Типы точек покоя
- 29.Числовой ряд сумма ряда
- 30.Необходимые признаки сходимости ряда
- 31.Сравнение рядов с положительными членами
- 32.Признаки сравнения. Признак Даламбера.
- 33. Признак сравнения. Признак коши
- 34. Интегральные сходимости знакопостоянных рядов
- 35. Знакочередующиеся ряды. Теорема Лейбница
- 36. Знакопеременный ряд абсолютная и условная сходимость
- 37 Функциональный ряд. Свойство равномерно сходящихся функциональных рядов
- 38. Мажорируемый ряд.
- 39. Степенной ряд. Теорема Абеля
- 40. Интервал и радиус сходимости степенного ряда
- 41. Действие над степенными рядами (свойства степенных рядов)
- 42. Ряды Тейлора и Маклорена.
- 45. Ряды Фурье. Вычисление коэффициентов ряда фурье
- 46. Разложение в ряд Фурье непериодической функции
- 47. Ряд фурье для четных и нечетных функций
- 48. Ряд фурье по ортогональным системам функций
- 49. Интеграл Фурье
- 50. Преобразование Фурье
- 51. Функции комплексного переменного
- 52. Дифф-ие ф-ии комплексного переменного. Аналитические функции.
- 53. Условие Коши-Римана
- 54.Конформные отображения
- 55.Интеграл по комплексному переменному
- 56.Теорема Коши. Интеграл Коши
- 58.Ряд Лорана
- 57.Степенные ряды. Ряд Тейлора и Маклорена.
- 59.Классификация изолированных особых точек однозначной функции
- 61.Вычисление вычетов
- 62.Вычет функции относительно бесконечно удаленной точки
- 63.Основная теорема о вычетах
- 64.Вычисление интегралов с помощью вычетов
- 65.Оригинал и изображение по Лапласу
- 66.Свойства преобразований по Лапласу
- 67.Теорема о свертке
- 68.Нахождение оригинала по изображению
- 69.Теоремы разложения
- 70.Операционный метод решения ду и систем ду