logo
shpory_matem_VSYe

52. Дифф-ие ф-ии комплексного переменного. Аналитические функции.

Производная функции комплексного переменного определяется, как и производная в действительной области: Здесь z0, z _  комплексные и f(z0) = f(z0+z) - f(z).

Используя это определение и свойства пределов, несложно убедиться в справедливости следующих правил дифференцирования.

1. Сумма и произведение дифференцируемых в точке функций,  есть функция и справедливы равенства:

2. Частное дифференцируемых в точке функций, при условии, что знаменатель в точке не равен нулю, есть дифференцируемая в этой точке функция, :

3. Сложная функция f( (z)) дифференцируема в точке z0, если в этой точке дифференцируема функция  (z), а функция f(u) дифференцируема в точке u0, где u0 =  (z0) и u =  (z). При этом в точке z0 имеет место формула:

Для элементарных функций комплексного переменного справедливы формулы дифференцирования, установленные для действительных значений аргумента.  Например, рассмотрим функцию  f(z) = z3. По определению производной для любой точки z, принадлежащей комплексной области, записываем:

Предел существует для любой точки z, принадлежащей комплексной области и (z3)' =3z2. Аналогично можно получить: (zn)' = nzn-1 (n - действительное число).

 

ПРИМЕР 1. Вычисление значения производной функции коплексного переменного в точке.

 

Если f(z) = f(x+iy) = u(x, y) + iv(x, y), т.е. u(x, y) = Re f(z) и v(xy) = Im f(z),  то справедливы следующие утверждения:

1. Если функция f(z) дифференцируема в точке, то в этой точке существуют частные производные ее действительной и мнимой частей u(x, y) = Re f(z),   v(xy) = Im f(z)  и выполняется условие Коши-Римана:

2. Если u(x, y)  и v(xy) дифференцируемы в точке (x0, y0) (имеют непрерывные частные производные в этой точке) и выполняется условие Коши-Римана, то функция   f(z) = f(x+iy) = u(x, y) + iv(x, y)  дифференцируема в точке z0 = x0+ iy0.

3. Производная дифференцируемой функции может быть записана по одной из формул:

     

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4