1.2. Каскады
В некоторых ситуациях для моделирования системы достаточно указать ее состояние в заданные дискретные моменты времени. В этом случае в качестве эволюционного оператора можно использовать функцию, определяющую состояние системы в некоторый момент времени через ее состояние в предыдущий момент. Математической моделью динамической системы в этом случае служит разностное уравнение с заданным начальным условием
. (1.9)
Рассмотрим диффеоморфизм класса , , т. е. гомеоморфизм на такой, что и – отображения класса . Свяжем с диффеоморфизмом отображение : , определенное следующим образом:
для ;
для .
Отображение обладает следующими свойствами:
‑ ; (1.10)
‑ для любых
; (1.11)
‑ при любом фиксированном отображение
класса . (1.12)
Определение 1.6. Отображение со свойствами (1.10) ‑ (1.12) называется гладким каскадом, или гладкой динамической системой с дискретным временем на .
Определение 1.7. Множество
называется орбитой или траекторией точки под действием каскада .
Для траектории динамической системы (1.9) может выполняться одна из двух возможностей:
‑ либо при некотором , в этом случае существует наименьшее натуральное такое, что для всех , сама точка называется периодической точкой периода , а ее траектория состоит из различных точек (при точка называется неподвижной);
‑ либо для всех , в этом случае траектория состоит из счетного множества различных точек.
- Оглавление
- 3.6. Автокорреляционная функция и спектральная плотность ..118
- 3.7. Фрактальные структуры и размерность аттрактора ………123
- Введение
- 1. Модели нелинейных динамических систем
- 1.1. Потоки
- 1.2. Каскады
- 1.3. Связь уравнения движения и отображения
- 1.3.1. Непрерывное время
- 1.3.2. Дискретное время
- 1.4. Уравнения в вариациях
- 1.5. Диссипативные и консервативные системы
- 2. Регулярная динамика
- 2.1. Особые точки
- 2.1.1. Основные определения
- 2.1.2. Классификация особых точек линейных
- 2.1.3. Классификация особых точек нелинейных векторных полей
- 2.1.4. Особые точки каскада
- 2.2. Периодические решения
- 2.2.1. Переход к системе с постоянными коэффициентами
- 2.2.2. Линеаризация уравнений с периодическим решением
- 2.2.3. Построение сечения Пуанкаре
- 2.2.4. Периодические решения (циклы) каскадов
- 2.3. Инвариантные, предельные и притягивающие множества
- 2.3.1. Инвариантные множества (многообразия)
- 2.3.2. Предельные множества
- 2.3.3. Притягивающие множества
- 2.3.4. Аттрактор
- 2.3.5. Поглощающее множество
- 2.4. Устойчивость
- 2.4.1. Понятие устойчивости
- 2.4.2. Устойчивость по Ляпунову
- 2.4.3. Устойчивость по Пуассону
- 2.4.4. Структурная устойчивость
- 3. Хаотическая динамика
- 3.1. Признаки хаотического поведения
- 3.1.1. Существенная зависимость от начальных данных
- 3.1.2. Инвариантная мера
- 3.1.3. Эргодичность и перемешивание
- 3.1.4. Энтропия
- 3.1.5. Автокорреляционная функция
- 3.1.6. Фрактальная структура странных аттракторов
- 3.2. Характеристические показатели ляпунова
- 3.2.1. Непрерывные динамические системы
- 3.2.2. Дискретные динамические системы
- 3.2.3. Характеристические показатели и изменение фазового объема
- 3.2.4. Свойства характеристических показателей Ляпунова
- 3.3. Инвариантные меры динамических систем
- 3.3.1. Типы вероятностных мер
- 3.3.2. Инвариантная мера. Оператор Перрона‑Фробениуса
- 3.3.3. Эргодическая мера
- 3.3.4. Физическая мера
- 3.3.5. Устойчивость и сходимость мер
- 3.4. Эргодичность и перемешивание
- 3.4.1. Эргодичность
- 3.4.2. Перемешивание
- 3.4.3. Перекладывание