1.3. Связь уравнения движения и отображения
Локальные свойства динамических систем, т. е. их свойства при малых временах определяются видом исследуемых дифференциальных уравнений (уравнений движения). Асимптотическое поведение решений при зависит от свойств отображения .
Чаще всего отображение неизвестно, а динамическая система задается в виде уравнений движения, которые позволяют по точке в момент времени найти точку, отвечающую следующему моменту времени: для непрерывного времени и для дискретного. Т. е. определяется не вся траектория сразу, а задается правило, по которому траектория находится шаг за шагом. Такой способ оказывается более универсальным, чем задание отображения в явном виде. Например, для большинства хаотических систем не существует конструкций, позволяющих записать отображение, минуя все промежуточные моменты времени.
Одна из основных задач нелинейной динамики состоит в исследовании свойства отображения по заданным уравнениям движения.
- Оглавление
- 3.6. Автокорреляционная функция и спектральная плотность ..118
- 3.7. Фрактальные структуры и размерность аттрактора ………123
- Введение
- 1. Модели нелинейных динамических систем
- 1.1. Потоки
- 1.2. Каскады
- 1.3. Связь уравнения движения и отображения
- 1.3.1. Непрерывное время
- 1.3.2. Дискретное время
- 1.4. Уравнения в вариациях
- 1.5. Диссипативные и консервативные системы
- 2. Регулярная динамика
- 2.1. Особые точки
- 2.1.1. Основные определения
- 2.1.2. Классификация особых точек линейных
- 2.1.3. Классификация особых точек нелинейных векторных полей
- 2.1.4. Особые точки каскада
- 2.2. Периодические решения
- 2.2.1. Переход к системе с постоянными коэффициентами
- 2.2.2. Линеаризация уравнений с периодическим решением
- 2.2.3. Построение сечения Пуанкаре
- 2.2.4. Периодические решения (циклы) каскадов
- 2.3. Инвариантные, предельные и притягивающие множества
- 2.3.1. Инвариантные множества (многообразия)
- 2.3.2. Предельные множества
- 2.3.3. Притягивающие множества
- 2.3.4. Аттрактор
- 2.3.5. Поглощающее множество
- 2.4. Устойчивость
- 2.4.1. Понятие устойчивости
- 2.4.2. Устойчивость по Ляпунову
- 2.4.3. Устойчивость по Пуассону
- 2.4.4. Структурная устойчивость
- 3. Хаотическая динамика
- 3.1. Признаки хаотического поведения
- 3.1.1. Существенная зависимость от начальных данных
- 3.1.2. Инвариантная мера
- 3.1.3. Эргодичность и перемешивание
- 3.1.4. Энтропия
- 3.1.5. Автокорреляционная функция
- 3.1.6. Фрактальная структура странных аттракторов
- 3.2. Характеристические показатели ляпунова
- 3.2.1. Непрерывные динамические системы
- 3.2.2. Дискретные динамические системы
- 3.2.3. Характеристические показатели и изменение фазового объема
- 3.2.4. Свойства характеристических показателей Ляпунова
- 3.3. Инвариантные меры динамических систем
- 3.3.1. Типы вероятностных мер
- 3.3.2. Инвариантная мера. Оператор Перрона‑Фробениуса
- 3.3.3. Эргодическая мера
- 3.3.4. Физическая мера
- 3.3.5. Устойчивость и сходимость мер
- 3.4. Эргодичность и перемешивание
- 3.4.1. Эргодичность
- 3.4.2. Перемешивание
- 3.4.3. Перекладывание