Вычисление длины дуги плоской кривой
Пусть имеется дуга некоторой кривой, впишем в неё ломаную линию, и будем увеличивать число звеньев ломаной таким образом, чтобы наибольшая из длин отрезков стремилась к нулю (рис. 21). Если при этом периметр ломаной будет стремиться к определенному пределу, не зависящему от того, какие ломаные мы вписываем, то дуга называетсяспрямляемой, а предел - длиной этой дуги.
Рассмотрим задачу о вычислении длины дугикривой, заданной в декартовой системе координат, если- дифференцируемая функция, имеющая непрерывную производную в промежутке, причем точкамисоответствуют значенияи.
Пусть - вписанная ломаная. Её вершинам соответствуют значенияи. Произвольно выберем отрезоки вычислим его длину (рис. 22): , где ,,.
По теореме Лагранжа о конечных приращениях
.
Подставим и получим
.
Для периметра всей ломаной получим формулу:
,
и так как длина дуги по определению равна пределу данной интегральной суммы, можем записать
.
При параметрическом способе задания кривой
так как , а, имеем
,
где и- значения параметра на концах дуги, причём,.
В случае если кривая задана в полярных координатах , длина дуги,
где и- значения аргументана концах дуги кривой.
ПРИМЕР. Найти длину дуги кривой ,если изменяется от 0 до 1.
РЕШЕНИЕ
Воспользуемся формулой . Найдём:. Подставим полученную производную в формулу длины дуги, тогда
.
- Федеральное агентство по образованию
- М. М. Афанасьева, о.С. Громова, в. А. Павский
- В 3-х частях
- Часть 2
- Isb n 5-89289-216-6
- Правила выполнения и оформления контрольных работ
- Тема 1. Функции нескольких переменных
- 1.1 Общие сведения
- 1.2 Производные и дифференциалы
- 1.3 Экстремумы функции нескольких переменных
- 1.4 Скалярное поле. Производная по направлению. Градиент
- Тема 2. Комплексные числа
- Комплексная плоскость
- Действия над комплексными числами
- Тема 3. ОпределенныЙ и неопределенный интегралы
- 3.1 Основные понятия и теоремы Задача, приводящая к понятию определенного интеграла
- Определенный интеграл
- I этап.
- Связь интегрирования с дифференцированием
- Неопределенный интеграл
- Формула ньютона-лейбница
- , Где .
- Свойства интегралов
- Метод интегрирования по частям
- 3.3 Основные классы интегрируемых функций
- Интегрирование рациональных функций
- 1 Случай.
- 2 Случай.
- 3 Случай.
- Интегрирование иррациональных функций
- Интегрирование тригонометрических функций
- 3.4 Несобственные интегралы
- Несобственный интеграл с бесконечными пределами
- Несобственный интеграл от неограниченной функции
- 3.5 Приложения интегрального исчисления к геометрии Применение определенных интегралов к вычислению площадей
- Вычисление длины дуги плоской кривой
- Вычисление объёмов
- Тема 4. Дифференциальные уравнения
- 4.1 Основные понятия
- 4.2 Дифференциальные уравнения 1-го порядка
- Дифференциальные уравнения с разделёнными переменными
- Дифференциальные уравнения с разделяющимися переменными
- Однородные дифференциальные уравнения 1-го порядка
- Линейные дифференциальные уравнения 1-го порядка
- 4.3 Дифференциальные уравнения второго порядка
- Дифференциальные уравнения 2-го порядка, допускающие понижение порядка
- Линейные дифференциальные уравнения второго порядка
- Линейные уравнения 2-го порядка с постоянными коэффициентами
- 4.4 Задачи на составление дифференциальных уравнений
- Тема 5. Ряды
- 5.1 Числовые ряды
- 5.2 Числовые ряды с положительными членами
- Интегральный признак Коши
- Первый признак сравнения
- Второй признак сравнения
- Признак Даламбера
- 5.3 Знакопеременные ряды
- Знакопеременные ряды. Абсолютная и условная сходимость
- Достаточный признак сходимости
- 5.4 Степенные ряды
- Теорема Абеля
- Свойства степенных рядов
- 5.5 Разложение функции в степенной ряд. Ряд Тейлора
- Разложение по степеням X некоторых элементарных функций
- 5.6 Применение степенных рядов Интегрирование функций
- Интегрирование дифференциальных уравнений
- Контрольные задания
- 9. . 10..