Интегрирование иррациональных функций
Задача состоит в том, чтобы с помощью подстановки свести интеграл от иррациональной функции к интегралу от рациональной функции.
Рассмотрим некоторые из видов иррациональных функций.
1. , где– рациональная функция своих аргументов;дробные показатели.
Чтобы перейти к интегрированию рациональной функции, введем подстановку , где– НОК (наименьшее общее кратное) знаменателей дробей.
ПРИМЕР. Найти .
РЕШЕНИЕ
В данной функции дробные показатели степени. Их знаменатели 2 и 3, НОК(2,3)=6, следовательно, можно сделать подстановку. Тогда
.
2. , где- рациональная функция своих аргументов,n – натуральное число.
В этом случае вводится подстановка . Таким образом, переходим к интегрированию дробно-рациональной функции.
ПРИМЕР. Найти .
РЕШЕНИЕ
Сделаем подстановку , тогда, а.
Получим
.
Yandex.RTB R-A-252273-3
- Федеральное агентство по образованию
- М. М. Афанасьева, о.С. Громова, в. А. Павский
- В 3-х частях
- Часть 2
- Isb n 5-89289-216-6
- Правила выполнения и оформления контрольных работ
- Тема 1. Функции нескольких переменных
- 1.1 Общие сведения
- 1.2 Производные и дифференциалы
- 1.3 Экстремумы функции нескольких переменных
- 1.4 Скалярное поле. Производная по направлению. Градиент
- Тема 2. Комплексные числа
- Комплексная плоскость
- Действия над комплексными числами
- Тема 3. ОпределенныЙ и неопределенный интегралы
- 3.1 Основные понятия и теоремы Задача, приводящая к понятию определенного интеграла
- Определенный интеграл
- I этап.
- Связь интегрирования с дифференцированием
- Неопределенный интеграл
- Формула ньютона-лейбница
- , Где .
- Свойства интегралов
- Метод интегрирования по частям
- 3.3 Основные классы интегрируемых функций
- Интегрирование рациональных функций
- 1 Случай.
- 2 Случай.
- 3 Случай.
- Интегрирование иррациональных функций
- Интегрирование тригонометрических функций
- 3.4 Несобственные интегралы
- Несобственный интеграл с бесконечными пределами
- Несобственный интеграл от неограниченной функции
- 3.5 Приложения интегрального исчисления к геометрии Применение определенных интегралов к вычислению площадей
- Вычисление длины дуги плоской кривой
- Вычисление объёмов
- Тема 4. Дифференциальные уравнения
- 4.1 Основные понятия
- 4.2 Дифференциальные уравнения 1-го порядка
- Дифференциальные уравнения с разделёнными переменными
- Дифференциальные уравнения с разделяющимися переменными
- Однородные дифференциальные уравнения 1-го порядка
- Линейные дифференциальные уравнения 1-го порядка
- 4.3 Дифференциальные уравнения второго порядка
- Дифференциальные уравнения 2-го порядка, допускающие понижение порядка
- Линейные дифференциальные уравнения второго порядка
- Линейные уравнения 2-го порядка с постоянными коэффициентами
- 4.4 Задачи на составление дифференциальных уравнений
- Тема 5. Ряды
- 5.1 Числовые ряды
- 5.2 Числовые ряды с положительными членами
- Интегральный признак Коши
- Первый признак сравнения
- Второй признак сравнения
- Признак Даламбера
- 5.3 Знакопеременные ряды
- Знакопеременные ряды. Абсолютная и условная сходимость
- Достаточный признак сходимости
- 5.4 Степенные ряды
- Теорема Абеля
- Свойства степенных рядов
- 5.5 Разложение функции в степенной ряд. Ряд Тейлора
- Разложение по степеням X некоторых элементарных функций
- 5.6 Применение степенных рядов Интегрирование функций
- Интегрирование дифференциальных уравнений
- Контрольные задания
- 9. . 10..