Понятия фкп. Выражения для х и у.
О. Пусть дано некоторое множество М комплексных чисел z, например, некоторая область на плоскости Гаусса (z). Если каждому элементу z из этого множества по некоторому закону f поставлено в соответствие одно, вообще говоря, комплексное число ω = f(z), то говорят, что на множестве М определена функция комплексного переменного (ФКП) – ω. ω = f(z)
Область определения ФКП – множество М точек плоскости Гаусса(z).
О. Область М (на плоскости, в пространстве) называется односвязной, если любой замкнутый контур, лежащий в этой области, можно непрерывно стянуть в точку, не выходя при этом за пределы области (иначе, область без «дырок»).
Евклидово пространство – метрическое пространство, в котором для любых двух точек x и y определено число ρ(x, y) – расст. от х до y или метрика так, что выполняются аксиомы: 1) ρ(x, y) = ρ(y, х), 2) ρ(x, y) > 0 при x y; ρ(x, х) = 0 при любых х, 3) ρ(x, y) + ρ(y, z) ρ(y, z).
Рассмотрим комплексное число z = x + iy, тогда значение функции в точке z равно ω = f(z) = u + iv, Re[f(z)] = u – действительная часть, Im[f(z)] = v – мнимая часть функции ω = f(z). Т.о. при переходе от точки z к точке z1 меняются координаты x и y на плоскости Гаусса, следовательно, меняется и значение f(z), т.е. изменяются u и v, следовательно, u и v тоже функции переменных x и y: ω = f(z) = u(x, y) + iv(x, y).
Yandex.RTB R-A-252273-3- Понятия фкп. Выражения для х и у.
- Основные Элементарные функции
- Предел и непрерывность фкп
- Дифференцируемость. Условие Коши-Римана
- Гармонические функции. Гармонические пары.
- Определение и св-ва аналитических функций
- Конформность отображения посредством гармонической пары и аналитической функции. Геометрический смысл модуля и аргумента производной.
- Линейная функция
- Простейшая дробно-линейная функция
- Степенная функция
- Дробно-линейная функция
- Интегрирование по комплексному аргументу
- Теорема Коши. Интегральная формула Коши
- Ряды с комплексными членами
- Изолированные особые точки и их классификация
- Ряд Тейлора
- Ряд Лорана
- Основные теоремы о вычетах
- Скалярное поле. Определение. Линии и поверхности уровня.
- Скалярное поле. Производная по направлению.
- Скалярное поле. Градиент
- Векторное поле. О. Векторные линии и векторные трубки
- Поток векторного поля. О. Вычисление.
- Дивергенция векторного поля. О. Выч. Теорема г-о
- Циркуляция векторного поля. О. Вычисление
- Ротор векторного поля. О. Выч. Теорема Стокса
- Оператор Гамильтона. Диф-ые операции II порядка
- Специальные виды векторных полей. Соленоидальое
- Специальные виды векторных полей. Потенциальное
- Специальные виды векторных полей. Лапласово (гармоническое)
- Теорема о разложении векторных полей.
- Применение вычетов к вычислению контурных интегралов
- Применение тфкп
- Определение функционального анализа. Предмет функционального анализа.
- Определение евклидова пространства
- Определение линейных пространств. Аксиомы. Свойства
- Линейные операторы. Действия с лин. Операторами
- Базис и матрица линейного оператора Собственные значения и собственные векторы линейного оператора
- Квадратичные формы. Матрица квадратичной формы. Пример.
- Ортогональный и ортонормированный базис
- Понятие меры. Измеримые функции. Простые функции. Ортогональные функции
- Мера Лебега. Свойства меры Лебега. Интеграл Лебега
- Нормированные пространства. Норма. Примеры
- Метрические пространства. Метрика. Примеры. Сжатые отображения
- Ортогональный и ортонормированный базис. Процесс Ортогонализации. Сопряженные векторы в евклидовом пространстве.
- Дифференциальные уравнения с частными производными
- Основные уравнения математической физики
- Явная и Неявная разностная схема