Дифференцируемость. Условие Коши-Римана
О. Функция ω = f(z) = u (x,y) + iv(x,y) называется дифференцируемой в точке z, если ее приращение можно записать в виде ∆ω = ∆f(z) = A∆x - B∆y + i(A∆y+B∆x) +α∆x - β∆y +
+ (α∆y + β∆x), где А и В не зависят от ∆x и ∆y, а α→0, β→0 при ∆x→0, ∆y→0.
Т. Для того чтобы функция ω = f (z) была дифференцируемой в точке z необходимо и достаточно, чтобы она имела в этой точке конечную производную f ’(z) = A+ iB.
О. Если ω = f (z) имеет производную в точке z, то она называется дифференцируемой в этой точке. Функция, дифференцируемая в каждой точке некоторой области D плоскости Гаусса, называется дифференцируемой в области D.
Т. Дифференцируемая функция ω = f (z) в точке z (или в области D) непрерывна в этой точке (или области).
Теорема. Для того чтобы функция f(z) = u(x,y) + i v(x,y), определенная в некоторой области D, была дифференцируемой в точке z этой области необходимо и достаточно, чтобы в этой области существовали непрерывные частные производные функций u(x,y) и v(x,y), и выполнялись условия , , называемые условиями Коши - Римана или Эйлера – Даламбера, кратко, условиями КРЭДа.
Следствие. Так как производная дифференцируемой функции комплексного переменного равна f ’(z) = A+ iB (по теореме 2), где A= ,B= , то она может быть найдена по одной из формул:
f ’(z) = , f ’(z) = , f ’(z) = , f ’(z) = .
Yandex.RTB R-A-252273-3
- Понятия фкп. Выражения для х и у.
- Основные Элементарные функции
- Предел и непрерывность фкп
- Дифференцируемость. Условие Коши-Римана
- Гармонические функции. Гармонические пары.
- Определение и св-ва аналитических функций
- Конформность отображения посредством гармонической пары и аналитической функции. Геометрический смысл модуля и аргумента производной.
- Линейная функция
- Простейшая дробно-линейная функция
- Степенная функция
- Дробно-линейная функция
- Интегрирование по комплексному аргументу
- Теорема Коши. Интегральная формула Коши
- Ряды с комплексными членами
- Изолированные особые точки и их классификация
- Ряд Тейлора
- Ряд Лорана
- Основные теоремы о вычетах
- Скалярное поле. Определение. Линии и поверхности уровня.
- Скалярное поле. Производная по направлению.
- Скалярное поле. Градиент
- Векторное поле. О. Векторные линии и векторные трубки
- Поток векторного поля. О. Вычисление.
- Дивергенция векторного поля. О. Выч. Теорема г-о
- Циркуляция векторного поля. О. Вычисление
- Ротор векторного поля. О. Выч. Теорема Стокса
- Оператор Гамильтона. Диф-ые операции II порядка
- Специальные виды векторных полей. Соленоидальое
- Специальные виды векторных полей. Потенциальное
- Специальные виды векторных полей. Лапласово (гармоническое)
- Теорема о разложении векторных полей.
- Применение вычетов к вычислению контурных интегралов
- Применение тфкп
- Определение функционального анализа. Предмет функционального анализа.
- Определение евклидова пространства
- Определение линейных пространств. Аксиомы. Свойства
- Линейные операторы. Действия с лин. Операторами
- Базис и матрица линейного оператора Собственные значения и собственные векторы линейного оператора
- Квадратичные формы. Матрица квадратичной формы. Пример.
- Ортогональный и ортонормированный базис
- Понятие меры. Измеримые функции. Простые функции. Ортогональные функции
- Мера Лебега. Свойства меры Лебега. Интеграл Лебега
- Нормированные пространства. Норма. Примеры
- Метрические пространства. Метрика. Примеры. Сжатые отображения
- Ортогональный и ортонормированный базис. Процесс Ортогонализации. Сопряженные векторы в евклидовом пространстве.
- Дифференциальные уравнения с частными производными
- Основные уравнения математической физики
- Явная и Неявная разностная схема