шпоргалки по математике
Квадратичные формы. Матрица квадратичной формы. Пример.
Квадратичная форма переменных x1, x2,…, xn – функция f(x1, x2,…, xn) = = a11x12 + a12x1x2 +…+ a1nx1xn + a21x2x1 + a22x22 +…+ a2nx2xn +…+ an1xnx1 +an2xnx2+…+annxn2, aij - коэффициенты квадратичной формы.
Матрица A = называется матрицей квадратичной формы, а ее ранг - рангом квадратичной формы. Квадратичная форма наз. невырожденной, если det A 0.
Квадратичная форма называется канонической, если все aij = 0, i j, т. е.
f(x1, x2,…, xn) = = a11x12 + a22x22 +…+ annxn2
Пример 1. Найдем матрицу квадратичной формы
F = 2 x12 − 4 x1 x2 + x22 + 2 x1 x3 − x32. Решение. 1. Запишем квадратичную форму F в виде: F = 2 x12 − 2 x1 x2 − 2 x2 x1 + x22 + x1 x3 + x3 x1 − x32. 2. Матрица этой квадр-ой формы:
A =
Yandex.RTB R-A-252273-3
Содержание
- Понятия фкп. Выражения для х и у.
- Основные Элементарные функции
- Предел и непрерывность фкп
- Дифференцируемость. Условие Коши-Римана
- Гармонические функции. Гармонические пары.
- Определение и св-ва аналитических функций
- Конформность отображения посредством гармонической пары и аналитической функции. Геометрический смысл модуля и аргумента производной.
- Линейная функция
- Простейшая дробно-линейная функция
- Степенная функция
- Дробно-линейная функция
- Интегрирование по комплексному аргументу
- Теорема Коши. Интегральная формула Коши
- Ряды с комплексными членами
- Изолированные особые точки и их классификация
- Ряд Тейлора
- Ряд Лорана
- Основные теоремы о вычетах
- Скалярное поле. Определение. Линии и поверхности уровня.
- Скалярное поле. Производная по направлению.
- Скалярное поле. Градиент
- Векторное поле. О. Векторные линии и векторные трубки
- Поток векторного поля. О. Вычисление.
- Дивергенция векторного поля. О. Выч. Теорема г-о
- Циркуляция векторного поля. О. Вычисление
- Ротор векторного поля. О. Выч. Теорема Стокса
- Оператор Гамильтона. Диф-ые операции II порядка
- Специальные виды векторных полей. Соленоидальое
- Специальные виды векторных полей. Потенциальное
- Специальные виды векторных полей. Лапласово (гармоническое)
- Теорема о разложении векторных полей.
- Применение вычетов к вычислению контурных интегралов
- Применение тфкп
- Определение функционального анализа. Предмет функционального анализа.
- Определение евклидова пространства
- Определение линейных пространств. Аксиомы. Свойства
- Линейные операторы. Действия с лин. Операторами
- Базис и матрица линейного оператора Собственные значения и собственные векторы линейного оператора
- Квадратичные формы. Матрица квадратичной формы. Пример.
- Ортогональный и ортонормированный базис
- Понятие меры. Измеримые функции. Простые функции. Ортогональные функции
- Мера Лебега. Свойства меры Лебега. Интеграл Лебега
- Нормированные пространства. Норма. Примеры
- Метрические пространства. Метрика. Примеры. Сжатые отображения
- Ортогональный и ортонормированный базис. Процесс Ортогонализации. Сопряженные векторы в евклидовом пространстве.
- Дифференциальные уравнения с частными производными
- Основные уравнения математической физики
- Явная и Неявная разностная схема