8.9 Главные оси тензора
Для любого симметричного тензора можно подобрать такую ориентацию прямоугольной декартовой системы координат, в которой все недиагональные компоненты станут равными нулю [11]:
Такие оси называются главными, а компоненты λi – главными компонентами. Матрица в таких осях называется матрицей диагонального вида. Компоненты λ1, λ2 , λ3 , действуя вдоль координатных осей, являются проекциями вектора , определяющего главное направление данного тензора. Особенность главного направления состоит в том, что в результате умножения на любой вектор, действующий в этом направлении, получается вектор, коллинеарный исходному. В частности:
, (8.5)
где для определенности взято произведение справа. Вещественное число λ в данном случае называется собственные значением тензора. С целью определения λ и запишем выражение (8.5) в развернутом виде:
Перенося влево λ уi , получаем:
(8.6)
Чтобы данная однородная система линейных уравнений относительно уi имела нетривиальные решения, ее определитель должен быть равен нулю:
( 8.7 )
Собственные значения определителя (8.7) λ (и тензора ) вычисляют, раскрывая определитель и группируя члены по степеням λ :
(8.8)
Уравнение (8.8) называется характеристическим уравнением тензора , а его коэффициенты – инвариантами тензора .
Компоненты тензоров меняются при изменении системы координат. Однако из компонент можно составить величины, не зависящие от выбора системы координат, которые называются инвариантами. Такими величинами будут коэффициенты характеристического уравнения (8.8), поскольку собственные значения , как и их главные значения, от выбора системы координат не зависят (собственные значения λ– скаляры и от системы координат зависеть не могут).
Если раскрыть определитель (8.7), то получим, что каждому тензору соответствует:
1-й или линейный инвариант –
где аii – диагональные компоненты данного тензора;
2-й или квадратичный инвариант:
3-й или кубический инвариант:
В главных осях выражения для инвариантов упрощаются, поскольку исчезают недиагональные компоненты тензора:
Полученные три инварианта являются базисными; бесчисленное множество других инвариантов каждого симметричного тензора аik может быть получено в результате линейных операций с тремя базис-ными.
- 8 Приложения. Элементы векторной и тензорной алгебры
- 1.1 Задачи курса «Механика сплошных сред»
- 1.2 Предмет механики сплошной среды
- 1.3 Методы механики сплошной среды
- 1.4 Основные принципы механики сплошной среды
- 1.5 Элементарный объем
- 1.6 Переменные Лагранжа и Эйлера
- 1.7 Движение и равновесие сплошной среды
- 2 Статика сплошной среды
- 2.1 Напряжение в точке
- 2.2 Напряженное состояние в точке
- 2.3 Соотношения Коши и компоненты напряженного
- 2.4 Тензор напряжений
- 2.5 Доказательство тензорности напряженного состояния*
- 2.6 Условия симметричности тензора напряжений
- 2.7 Доказательство равенства парных касательных
- 2.8 Общий случай напряженного состояния*
- 2.9 Главные напряжения
- 2.10 Нормальные и касательные напряжения
- 2.11 Максимальные касательные напряжения
- 2.12 Шаровой тензор и девиатор напряжений
- 2.13 Изображение напряженного состояния в точке
- 2.14 Октаэдрические напряжения и интенсивности
- 2.15 Уравнения равновесия
- 2.16 Уравнения равновесия в недекартовых системах
- 2.17 Уравнения равновесия в общем случае *
- 2.18 Краевая задача статики сплошной среды
- 3 Кинематика сплошной среды
- 3.2 Абсолютная и относительная деформация
- 3.3 Поле относительных смещений
- 3.4 Составляющие движения сплошной среды
- 3.5 Тензор малых деформаций
- 3.6 Геометрический смысл компонент тензора малых
- 3.7 Тензоры конечных деформаций
- 3.8 Общий случай малых деформаций *
- 3.9 Анализ деформированного состояния в точке
- 3.10 Инварианты тензора малых деформаций
- 3.11 Главные деформации
- 3.12 Максимальные угловые деформации
- 3.13 Октаэдрические деформации и интенсивности
- 3.14 Условия совместности деформаций
- 3.15 Определение перемещений по деформациям*
- 3.16 Поле скоростей
- 3.17 Первая теорема Гельмгольца
- 3.18 Тензор скоростей деформаций
- 3.19 Свойства тензора скоростей деформаций
- 3.20 Вторая теорема Гельмгольца*
- 4 Элементы термодинамики сплошных сред
- 4.1 Термодинамические системы и параметры состояния
- 4.2 Законы сохранения
- 4.3 Теоремы э. Нётер и свойства симметрии
- 4.4 Закон сохранения массы и уравнение неразрывности
- 4.5 Вывод уравнения неразрывности*
- 4.6 Теорема «живых сил»
- 4.7 Первое начало термодинамики
- 4.8 Уравнение теплопроводности
- 5 Основы теории упругости
- 5.1 Предмет теории упругости
- 5.2 Обобщенный закон Гука
- 5.3 Упругое изменение объема и формы
- 5.4 Потенциальная энергия упругого деформирования
- 5.5 Постановка задач в теории упругости
- 5.6 Решение задач теории упругости в перемещениях
- 5.7 Решения задач теории упругости в напряжениях
- 5.8 Плоское напряженное состояние*
- 5.9 Плоское деформированное состояние*
- 5.10 Плоская задача в моментной теории упругости *
- 5.11 Функция напряжений*
- 5.12 Способы решения задач теории упругости*
- 6 Основы теории пластичности
- 6.1 Предмет теории пластичности
- 6.2 Переход в пластическое состояние при растяжении
- 6.3 Условия пластичности
- 6.6 Экспериментальная проверка условий
- 6.7 Теории пластичности
- 6.8 Теория пластического течения
- 6.10 Постулат Друкера и ассоциированный закон
- 6.11 Области применимости различных теорий пластичности
- 6.12 Экстремальные принципы пластического
- 7 Применение теории пластичности в омд
- 7.1 Постановка задач при расчетах процессов омд
- 7.2 Математический аппарат и краевые условия при омд
- 7.3 Способы решения задач теории пластичности
- 1.Численные методы;
- 2.Прямые методы получения решений на основе экстремальных принципов мсс;
- 3.Уменьшения числа независимых переменных и искомых функций.
- 7.4 Частные виды напряженно-деформированных
- 1. Толщина пластины значительно меньше остальных размеров;
- 2. Деформирующие усилия приложены в срединной плоскости пластины.
- 7.5 Особенности плоского деформированного состояния
- 7.6 Осесимметричное деформированное состояние
- 7.7 Метод линий скольжения
- 7.8. Свойства линий скольжения
- 7.9 Простые сетки линий скольжения
- 7.10 Статические граничные условия в млс
- 7.11 Задача о внедрении штампа в полупространство
- 7.12 Основные краевые задачи в млс*
- 7.13 Определение поля скоростей в млс*
- 7.14 Полные решения задач плоской деформации
- Пластичности в омд”
- 8. Приложения. Элементы векторной и тензорной алгебры и анализа
- 8.1 Скаляры и векторы
- 8.2 Векторный базис
- 8.3 Сложение и умножение векторов
- 8.4 Тензоры 2-го ранга
- 8.5 Преобразование компонент тензора
- 8.6 Сложение и умножение тензоров
- 8.7 Симметрирование и альтернирование тензоров
- 8.8 Умножение тензора на вектор
- 8.9 Главные оси тензора
- 8.10 Определение величины и направления главных компонент тензора
- 8.12 Поверхности уровня и градиент скалярного поля
- 8.13 Векторное поле и векторные линии
- 8.14 Поток и дивергенция векторного поля
- Теорема Остроградского–Гаусса:
- 8.15 Циркуляция и ротор векторного поля
- 8.16 Оператор («набла»)
- 8.17 Дифференциальные операции 2-го порядка
- 8.18 Потенциальные векторные поля
- 8.20 Гармонические векторные поля
- 8.21 Основная теорема векторного анализа
- 8.22 Производная и градиент векторного поля
- 8.23 Поток тензорного поля
- 8.24 Дивергенция тензорного поля
- 8.25 Производная тензорного поля по направлению
- Предметный указатель
- Перечень ссылок