2.3 Соотношения Коши и компоненты напряженного
состояния в точке
Разложив векторы по осям системы координат, получим запись соотношений Коши в развернутом виде:
(2.9)
Компоненты есть не что иное, как нормальные (при i = к) и касательные (при i ≠ к) напряжения на гранях элементарного объема, в соответствии с правилом индексов п. 2.1 (здесь и везде в дальнейшем, если не оговорено иное, имеется ввиду прямоугольная декартова систеа координат).
Нормальным называется напряжение, которое действует по нормали к площадке.
Касательным называется напряжение, которое действует по касательной к площадке.
Перепишем соотношения Коши в развернутом виде, используя при этом принятое в ОМД обозначение нормальных напряжений при помощи буквы σ («сигма») с одним индексом, и касательных – при помощи буквы τ («тау») с двумя индексами. В таком виде данные соотношения и будут использоваться в дальнейшем:
(2.10)
Входящие в правую часть (2.10) нормальные и касательные напряжения являются компонентами напряженного состояния в точке, т.к. их знание необходимо и достаточно для определения на любой площадке (с нормалью ), проходящей через данную точку.
Компонентами напряженного состояния в точке являются три нормальных и шесть касательных напряжений на гранях эле-ментарного объема.
На гранях элементарного объема в декартовой системе координат компоненты напряженного состояния изображаются, как показано на рисунке 2.3.
На противоположных гранях элементарного объема также будут действовать 9 напряжений, но они отличаются от напряжений на лицевых гранях на бесконечно малые величины.
Рисунок 2.3 − Компоненты напряженого состояния в точке
Рассмотрим более подробно правила индексов для напряжений:
1. Индекс нормального напряжения показывает, вдоль какой оси оно действует.
2. Первый индекс касательного напряжения указывает его адрес (по какой площадке оно действует) и соответствует нормали к данной площадке, а второй индекс показывает, вдоль какой оси оно действует.
Следует иметь в виду, что в старых учебниках (например, [10]), используется обратное правило для касательных напряжений, по которому адрес напряжения указывает второй индекс.
Правила знаков для напряжений:
1. Нормальное напряжение имеет знак плюс, если оно вызывает деформацию растяжения и знак минус – в обрат ном случае.
2. Знак касательного напряжения определяется по выражению:
где признак α1 имеет знак плюс, если направление касательного нап- ряжения совпадает с положительным направлением паралель-
ной ему оси; в противном случае – минус;
признак α2 имеет знак плюс, если на площадке касательного напряжения действует положительное нормальое напряжение; если отрицательное – знак минус;
признак α3 имеет знак плюс, если указанное выше нормальное напряжение направлено в положительном направлении парал-лельной ему оси; в противном случае – знак минус.
Символ «sign» произносится как «сигнум», что означает знак. Например: на рисунке. 2.4 показаны векторы нормальных и касательных напряжений с индексами и знаками, соответствующими вышеприведенным правилам индексов и знаков.
Рисунок 2.4 − Пример на правила индексов и знаков
Следует помнить, что ноль является положительным числом и поэтому при отсутствии на площадке нормального напряжения признаки α2 и α3 имеют знак плюс.
- 8 Приложения. Элементы векторной и тензорной алгебры
- 1.1 Задачи курса «Механика сплошных сред»
- 1.2 Предмет механики сплошной среды
- 1.3 Методы механики сплошной среды
- 1.4 Основные принципы механики сплошной среды
- 1.5 Элементарный объем
- 1.6 Переменные Лагранжа и Эйлера
- 1.7 Движение и равновесие сплошной среды
- 2 Статика сплошной среды
- 2.1 Напряжение в точке
- 2.2 Напряженное состояние в точке
- 2.3 Соотношения Коши и компоненты напряженного
- 2.4 Тензор напряжений
- 2.5 Доказательство тензорности напряженного состояния*
- 2.6 Условия симметричности тензора напряжений
- 2.7 Доказательство равенства парных касательных
- 2.8 Общий случай напряженного состояния*
- 2.9 Главные напряжения
- 2.10 Нормальные и касательные напряжения
- 2.11 Максимальные касательные напряжения
- 2.12 Шаровой тензор и девиатор напряжений
- 2.13 Изображение напряженного состояния в точке
- 2.14 Октаэдрические напряжения и интенсивности
- 2.15 Уравнения равновесия
- 2.16 Уравнения равновесия в недекартовых системах
- 2.17 Уравнения равновесия в общем случае *
- 2.18 Краевая задача статики сплошной среды
- 3 Кинематика сплошной среды
- 3.2 Абсолютная и относительная деформация
- 3.3 Поле относительных смещений
- 3.4 Составляющие движения сплошной среды
- 3.5 Тензор малых деформаций
- 3.6 Геометрический смысл компонент тензора малых
- 3.7 Тензоры конечных деформаций
- 3.8 Общий случай малых деформаций *
- 3.9 Анализ деформированного состояния в точке
- 3.10 Инварианты тензора малых деформаций
- 3.11 Главные деформации
- 3.12 Максимальные угловые деформации
- 3.13 Октаэдрические деформации и интенсивности
- 3.14 Условия совместности деформаций
- 3.15 Определение перемещений по деформациям*
- 3.16 Поле скоростей
- 3.17 Первая теорема Гельмгольца
- 3.18 Тензор скоростей деформаций
- 3.19 Свойства тензора скоростей деформаций
- 3.20 Вторая теорема Гельмгольца*
- 4 Элементы термодинамики сплошных сред
- 4.1 Термодинамические системы и параметры состояния
- 4.2 Законы сохранения
- 4.3 Теоремы э. Нётер и свойства симметрии
- 4.4 Закон сохранения массы и уравнение неразрывности
- 4.5 Вывод уравнения неразрывности*
- 4.6 Теорема «живых сил»
- 4.7 Первое начало термодинамики
- 4.8 Уравнение теплопроводности
- 5 Основы теории упругости
- 5.1 Предмет теории упругости
- 5.2 Обобщенный закон Гука
- 5.3 Упругое изменение объема и формы
- 5.4 Потенциальная энергия упругого деформирования
- 5.5 Постановка задач в теории упругости
- 5.6 Решение задач теории упругости в перемещениях
- 5.7 Решения задач теории упругости в напряжениях
- 5.8 Плоское напряженное состояние*
- 5.9 Плоское деформированное состояние*
- 5.10 Плоская задача в моментной теории упругости *
- 5.11 Функция напряжений*
- 5.12 Способы решения задач теории упругости*
- 6 Основы теории пластичности
- 6.1 Предмет теории пластичности
- 6.2 Переход в пластическое состояние при растяжении
- 6.3 Условия пластичности
- 6.6 Экспериментальная проверка условий
- 6.7 Теории пластичности
- 6.8 Теория пластического течения
- 6.10 Постулат Друкера и ассоциированный закон
- 6.11 Области применимости различных теорий пластичности
- 6.12 Экстремальные принципы пластического
- 7 Применение теории пластичности в омд
- 7.1 Постановка задач при расчетах процессов омд
- 7.2 Математический аппарат и краевые условия при омд
- 7.3 Способы решения задач теории пластичности
- 1.Численные методы;
- 2.Прямые методы получения решений на основе экстремальных принципов мсс;
- 3.Уменьшения числа независимых переменных и искомых функций.
- 7.4 Частные виды напряженно-деформированных
- 1. Толщина пластины значительно меньше остальных размеров;
- 2. Деформирующие усилия приложены в срединной плоскости пластины.
- 7.5 Особенности плоского деформированного состояния
- 7.6 Осесимметричное деформированное состояние
- 7.7 Метод линий скольжения
- 7.8. Свойства линий скольжения
- 7.9 Простые сетки линий скольжения
- 7.10 Статические граничные условия в млс
- 7.11 Задача о внедрении штампа в полупространство
- 7.12 Основные краевые задачи в млс*
- 7.13 Определение поля скоростей в млс*
- 7.14 Полные решения задач плоской деформации
- Пластичности в омд”
- 8. Приложения. Элементы векторной и тензорной алгебры и анализа
- 8.1 Скаляры и векторы
- 8.2 Векторный базис
- 8.3 Сложение и умножение векторов
- 8.4 Тензоры 2-го ранга
- 8.5 Преобразование компонент тензора
- 8.6 Сложение и умножение тензоров
- 8.7 Симметрирование и альтернирование тензоров
- 8.8 Умножение тензора на вектор
- 8.9 Главные оси тензора
- 8.10 Определение величины и направления главных компонент тензора
- 8.12 Поверхности уровня и градиент скалярного поля
- 8.13 Векторное поле и векторные линии
- 8.14 Поток и дивергенция векторного поля
- Теорема Остроградского–Гаусса:
- 8.15 Циркуляция и ротор векторного поля
- 8.16 Оператор («набла»)
- 8.17 Дифференциальные операции 2-го порядка
- 8.18 Потенциальные векторные поля
- 8.20 Гармонические векторные поля
- 8.21 Основная теорема векторного анализа
- 8.22 Производная и градиент векторного поля
- 8.23 Поток тензорного поля
- 8.24 Дивергенция тензорного поля
- 8.25 Производная тензорного поля по направлению
- Предметный указатель
- Перечень ссылок