3.3 Поле относительных смещений
Рассмотренные показатели деформации применимы только к линейной деформации. В общем случае вопрос об изменении абсолютных деформаций (т.е. вектора смещений ) решается следующим образом: берется полная производная от функции по векторному аргументу .Известно, что изменение скалярного поля описывается векторным полем его градиента. Изменение векторного поля характеризуется тензором – производной векторной функции по векторному аргументу. В случае поля смещений производная вектор-функции по векторному аргументу будет тензором второго ранга с компонентами:
(3.3)
Тензор (3.3) называется тензором относительных смещений. Если в каждой точке среды задан тензор (3.3), то тем самым определено поле относительных смещений. Движение среды, естественно, рассматривается в переменных Эйлера.
Установим геометрический смысл компонент тензора (3.3). Рассмотрим вначале более простой случай 2-х мерной или плоской деформации. Сравним смещения в двух бесконечно близких точках М и
N, лежащих на одной прямой, параллельной оси х (рис.3.3):
Рисунок 3.3 − Деформация среды вдоль оси X
Деформации считаем малыми. Приращение компоненты uх при перходе в точку N равно:
(3.4)
т.к. uх (х, у) считается непрерывной вместе со своими производными функцией координат (рис.3.3). Вследствие малости смещений члены второго и более высоких порядков малости в (3.4) отсутствуют. Это приращение является абсолютной деформацией отрезка М N = dx. Его относительная деформация:
Т.о. градиент компоненты uх в направлении х есть линейная деформация εх .
Приращение компоненты uy при переходе в точку N :
(3.5)
Оно является абсолютным изменением смещения в поперечном направлении на длине dx. Относительное изменение смещения:
,
т.к. из-за малости деформаций этот угол мал. Эта компонента показывает, насколько быстро изменяется поперечное смещение uу при перемещении в направлении х (т.е.градиент uу по х). Геометрический смысл этой компоненты более сложен и будет рассмотрен в дальнейшем.
Если точки М и N будут лежать на одной прямой, параллельной оси у (рис.3.4), то по аналогии будем иметь слеующие две компоненты изменения поля :
– линейную
– и угловую
Рисунок 3.4 − Деформация среды вдоль оси Y
В общем случае, когда М и N расположены на прямой, не параллельной ни одной из координатных осей, будут иметь место все 4 компоненты, образующие тензор относительных смещений для 2-х мерного (плоского) случая:
Т.о. диагональные компоненты тензора относительных смещений являются относительными линейными деформациями среды в направлениях осей системы координат. Недиагональные, несколько забегая вперед, являются суммой поворотов и угловых деформаций элементарных объемов.
В трехмерном пространстве компоненты смещения точки N, координаты которой до деформации были x+dx, y+dy и z+dz, можно с достаточной точностью выразить в виде:
(3.5)
Выражение (3.5) есть результат разложения в ряд Тейлора вектор-функции при отбрасывании членов 2-го и более высоких порядков малости. Легко видеть, что в (3.5) коэффициенты при слагаемых правой части являются компонентами тензора (3.3). Т.о. каждая компонента тензора относительных смещений показывает, насколько интенсивно изменяется соответствующая проекция смещения при переходе на бесконечно малое расстояние в направлениях осей координат.
- 8 Приложения. Элементы векторной и тензорной алгебры
- 1.1 Задачи курса «Механика сплошных сред»
- 1.2 Предмет механики сплошной среды
- 1.3 Методы механики сплошной среды
- 1.4 Основные принципы механики сплошной среды
- 1.5 Элементарный объем
- 1.6 Переменные Лагранжа и Эйлера
- 1.7 Движение и равновесие сплошной среды
- 2 Статика сплошной среды
- 2.1 Напряжение в точке
- 2.2 Напряженное состояние в точке
- 2.3 Соотношения Коши и компоненты напряженного
- 2.4 Тензор напряжений
- 2.5 Доказательство тензорности напряженного состояния*
- 2.6 Условия симметричности тензора напряжений
- 2.7 Доказательство равенства парных касательных
- 2.8 Общий случай напряженного состояния*
- 2.9 Главные напряжения
- 2.10 Нормальные и касательные напряжения
- 2.11 Максимальные касательные напряжения
- 2.12 Шаровой тензор и девиатор напряжений
- 2.13 Изображение напряженного состояния в точке
- 2.14 Октаэдрические напряжения и интенсивности
- 2.15 Уравнения равновесия
- 2.16 Уравнения равновесия в недекартовых системах
- 2.17 Уравнения равновесия в общем случае *
- 2.18 Краевая задача статики сплошной среды
- 3 Кинематика сплошной среды
- 3.2 Абсолютная и относительная деформация
- 3.3 Поле относительных смещений
- 3.4 Составляющие движения сплошной среды
- 3.5 Тензор малых деформаций
- 3.6 Геометрический смысл компонент тензора малых
- 3.7 Тензоры конечных деформаций
- 3.8 Общий случай малых деформаций *
- 3.9 Анализ деформированного состояния в точке
- 3.10 Инварианты тензора малых деформаций
- 3.11 Главные деформации
- 3.12 Максимальные угловые деформации
- 3.13 Октаэдрические деформации и интенсивности
- 3.14 Условия совместности деформаций
- 3.15 Определение перемещений по деформациям*
- 3.16 Поле скоростей
- 3.17 Первая теорема Гельмгольца
- 3.18 Тензор скоростей деформаций
- 3.19 Свойства тензора скоростей деформаций
- 3.20 Вторая теорема Гельмгольца*
- 4 Элементы термодинамики сплошных сред
- 4.1 Термодинамические системы и параметры состояния
- 4.2 Законы сохранения
- 4.3 Теоремы э. Нётер и свойства симметрии
- 4.4 Закон сохранения массы и уравнение неразрывности
- 4.5 Вывод уравнения неразрывности*
- 4.6 Теорема «живых сил»
- 4.7 Первое начало термодинамики
- 4.8 Уравнение теплопроводности
- 5 Основы теории упругости
- 5.1 Предмет теории упругости
- 5.2 Обобщенный закон Гука
- 5.3 Упругое изменение объема и формы
- 5.4 Потенциальная энергия упругого деформирования
- 5.5 Постановка задач в теории упругости
- 5.6 Решение задач теории упругости в перемещениях
- 5.7 Решения задач теории упругости в напряжениях
- 5.8 Плоское напряженное состояние*
- 5.9 Плоское деформированное состояние*
- 5.10 Плоская задача в моментной теории упругости *
- 5.11 Функция напряжений*
- 5.12 Способы решения задач теории упругости*
- 6 Основы теории пластичности
- 6.1 Предмет теории пластичности
- 6.2 Переход в пластическое состояние при растяжении
- 6.3 Условия пластичности
- 6.6 Экспериментальная проверка условий
- 6.7 Теории пластичности
- 6.8 Теория пластического течения
- 6.10 Постулат Друкера и ассоциированный закон
- 6.11 Области применимости различных теорий пластичности
- 6.12 Экстремальные принципы пластического
- 7 Применение теории пластичности в омд
- 7.1 Постановка задач при расчетах процессов омд
- 7.2 Математический аппарат и краевые условия при омд
- 7.3 Способы решения задач теории пластичности
- 1.Численные методы;
- 2.Прямые методы получения решений на основе экстремальных принципов мсс;
- 3.Уменьшения числа независимых переменных и искомых функций.
- 7.4 Частные виды напряженно-деформированных
- 1. Толщина пластины значительно меньше остальных размеров;
- 2. Деформирующие усилия приложены в срединной плоскости пластины.
- 7.5 Особенности плоского деформированного состояния
- 7.6 Осесимметричное деформированное состояние
- 7.7 Метод линий скольжения
- 7.8. Свойства линий скольжения
- 7.9 Простые сетки линий скольжения
- 7.10 Статические граничные условия в млс
- 7.11 Задача о внедрении штампа в полупространство
- 7.12 Основные краевые задачи в млс*
- 7.13 Определение поля скоростей в млс*
- 7.14 Полные решения задач плоской деформации
- Пластичности в омд”
- 8. Приложения. Элементы векторной и тензорной алгебры и анализа
- 8.1 Скаляры и векторы
- 8.2 Векторный базис
- 8.3 Сложение и умножение векторов
- 8.4 Тензоры 2-го ранга
- 8.5 Преобразование компонент тензора
- 8.6 Сложение и умножение тензоров
- 8.7 Симметрирование и альтернирование тензоров
- 8.8 Умножение тензора на вектор
- 8.9 Главные оси тензора
- 8.10 Определение величины и направления главных компонент тензора
- 8.12 Поверхности уровня и градиент скалярного поля
- 8.13 Векторное поле и векторные линии
- 8.14 Поток и дивергенция векторного поля
- Теорема Остроградского–Гаусса:
- 8.15 Циркуляция и ротор векторного поля
- 8.16 Оператор («набла»)
- 8.17 Дифференциальные операции 2-го порядка
- 8.18 Потенциальные векторные поля
- 8.20 Гармонические векторные поля
- 8.21 Основная теорема векторного анализа
- 8.22 Производная и градиент векторного поля
- 8.23 Поток тензорного поля
- 8.24 Дивергенция тензорного поля
- 8.25 Производная тензорного поля по направлению
- Предметный указатель
- Перечень ссылок