logo
Учебник Математики

3. Наименьшее общее кратное и наибольший общий делитель

Рассмотрим известные из школьного курса математики понятия наименьшего общего кратного и наибольшего общего делителя натуральных чисел, сформулируем их основные свойства, опустив все доказательства.

Определение. Общим кратным натуральных чисел а и b называется число, которое кратно каждому из данных чисел.

Наименьшее число из всех общих кратных чисел а и b называется наименьшим общим кратным этих чисел.

Наименьшее общее кратное чисел а и b условимся обозначать К(а, b). Например, два числа 12 и 18 общими кратными являются: 36, 72, 108, 144, 180 и т.д. Число 36 - наименьшее общее кратное чисел 12 и 18. Можно записать: К(12,18) = 36.

Для наименьшего общего кратного справедливы следующие утверждения:

1. Наименьшее общее кратное чисел а и b всегда существует и является единственным.

2. Наименьшее общее кратное чисел а и b не меньше большего из данных чисел, т.е. если а > b, то К(а, b)  а.

3. Любое общее кратное чисел а и b делится на их наименьшее общее кратное.

Определение. Общим делителем натуральных чисел а и b называется число, которое является делителем каждого из данных чисел.

Наибольшее число из всех общих делителей чисел а и b называется наибольшим общим делителем данных чисел. Наибольший общий делитель чисел а и b условимся обозначать D(а, b).

Например, для чисел 12 и 18 общими делителями являются числа: 1,2,3,6. Число 6 - наибольший общий делитель чисел 12 и 18. Можно записать: D(12,8)=6.

Число 1 является общим делителем любых двух натуральных чисел а и b. Если у этих чисел нет иных общих делителей, то D(а, b) = 1, а числа а и b называются взаимно простыми.

Например, числа 14 и 15 - взаимно простые, так как D (14, 15) = 1.

Для наибольшего общего делителя справедливы следующие утверждения:

1. Наибольший общий делитель чисел а и b всегда существует и является единственным.

2. Наибольший общий делитель чисел а и b не превосходит меньшего из данных чисел, т.е. если а < b, то D (а, b)  а.

3. Наибольший общий делитель чисел а и b делится на любой общий делитель этих чисел.

Наименьшее общее кратное чисел а и b и их наибольший общий делитель взаимосвязаны: произведение наименьшего общего кратного и наибольшего общего делителя чисел а и b равно произведению этих чисел, т.е.

К(а, b)D(а,b)=аb.

Из этого утверждения вытекают следующие следствия:

а) Наименьшее общее кратное двух взаимно простых чисел равно произведению этих чисел, т. е. D(а,b) = 1 К(а,b)=а b.

Например, чтобы найти наименьшее общее кратное чисел 14 и 15, достаточно их перемножить, так как D (14, 15) = 1.

б) Для того чтобы натуральное число а делилось на произведение взаимно простых чисел m и n, необходимо и достаточно, чтобы оно делилось и на m, и на n.

Это утверждение представляет собой признак делимости на числа, которые можно представить в виде произведения двух взаимно простых чисел.

Например, так как 6=2 3 и D(2,3)=1, то получаем признак делимости на 6: для того чтобы натуральное число делилось на 6, необходимо и достаточно, чтобы оно делилось на 2 и на 3.

Заметим, что данный признак можно применять многократно. Сформулируем, например, признак делимости на 60: для того чтобы число делилось на 60, необходимо и достаточно, чтобы оно делилось и на 4, и на 15. В свою очередь, число будет делиться на 15 тогда и только тогда, когда оно делится и на 3, и на 5. Обобщая, получаем следующий признак делимости на 60: для того чтобы число делилось на 60, необходимо и достаточно, чтобы оно делилось на 4, на 3 и на 5.

в) Частные, получаемые при делении двух данных чисел на их наибольший общий делитель, является взаимно простыми числами.

Этим свойством можно пользоваться при проверке правильности найденного наибольшего общего делителя данных чисел. Например, проверим, является ли число 12 наибольшим общим делителем чисел 24 и 36. Для этого, согласно последнему утверждению, разделим 24 и 36 на 12. Получим соответственно числа 2 и 3, которые являются вза­имно простыми. Следовательно, D (24, 36)=12.