1. Алгоритм сложения
Сложение однозначных чисел можно выполнить, основываясь на определении этого действия, но чтобы всякий раз не обращаться к определению, все суммы, которые получаются при сложении однозначных чисел, записывают в особую таблицу, называемую таблицей сложения однозначных чисел, и запоминают.
Естественно, смысл сложения сохраняется и для многозначных чисел, но практическое выполнение сложения происходит по особым правилам. Сумму многозначных чисел обычно находят, выполняя сложение столбиком.
Например,
341
+ 7238
7579
Выясним, каким образом возникает этот алгоритм, какие теоретические положения лежат в его основе.
Представим слагаемые 341 и 7238 в виде суммы степеней десяти с коэффициентами: 341 + 7238 = (3·102 + 4·10 + 1) + (7·103 + 2·102 + 3·10 + 8).
Раскроем скобки в полученном выражении, поменяем местами и сгруппируем слагаемые так, чтобы единицы оказались рядом с единиц десятки с десятками и т.д. Все эти преобразования можно выполи на основании соответствующих свойств сложения. Свойство ассоциативности разрешает записать выражение без скобок: 3·102 + 4 ·10 + 1 + 7·103 + 2·102 + 3 ·10 + 8.
На основании свойства коммутативности поменяем местами слагаемые: 7·103 + 3·102 + 2·102 + 4·10 + 3·10 + 1 + 8. Согласно свойству ассоциативности, произведем группировку: 7·103 + (3·102 + 2·102) + (4·10 + 3·10) + (1 + 8). Вынесем за скобки в первой выдела группе число 102, а во второй - 10. Это можно сделать в соответствии со свойством дистрибутивности умножения относительно сложения:
7·103 + (3 + 2) ·102 + (4 + 3) ·10 + (1 + 8).
Итак, сложение данных чисел 341 и 7238 свелось к сложению однозначных чисел, изображенных цифрами соответствующих разрядов. Эти суммы находим по таблице сложения: 7·103 + 5·102 + 7·10 + 9. Полученное выражение есть десятичная запись числа 7579.
Видим, что в основе алгоритма сложения многозначных чисел лежат следующие теоретические факты:
- способ записи чисел в десятичной системе счисления;
- свойства коммутативности и ассоциативности сложения;
- дистрибутивность умножения относительно сложения;
- таблица сложения однозначных чисел.
Нетрудно убедиться в том, что в случае сложения чисел «с переходом через десяток» теоретические основы алгоритма сложения будут теми же. Рассмотрим, например, сумму 748 + 436.
Представим слагаемые в виде суммы степеней десяти с соответствующими коэффициентами: (7·102 + 4·10 + 8) + (4·102 + 3·10 +6). Воспользуемся свойствами сложения и дистрибутивностью умножения относительно сложения и преобразуем полученное выражение к такому виду: (7+4)·102+(4+3)·10+(8+6). Видим, что в этом случае сложение данных чисел также свелось к сложению однозначных чисел, но сумма 7+4, 8+6 превышают 10 и поэтому последнее выражение не является десятичной записью числа. Необходимо сделать так, чтобы коэффициенты перед степенями 10 оказались меньше 10. Для этого выполним ряд преобразований. Сначала сумму 8+6 представим в виде 1·10 + 4: (7 + 4)·102 +(4+3)·10+(1·10 + 4).
Затем воспользуемся свойствами сложения и умножения и приведем полученное выражение к виду: (7+4)·102+(4+3+1)·10+4. Суть последнего преобразования такова: десяток, который получился при сложении единиц, прибавим к десяткам данных чисел. И наконец, записав сумму 7+4 в виде 1·10+1, получаем: (1·10+1)·102+8·10+4. Последнее выражение есть десятичная запись числа 1184. Следовательно, 748+436=1184.
Выведем алгоритм сложения многозначных чисел в общем виде.
Пусть даны числа: х=аn10n+аn–110n–1+…+а110+а0 и у=bn10n+bn–110n–1+…+b110+b0, т.е. рассмотрим случай, когда количество цифр в записи чисел х и у одинаково, х+у=(аn10n+аn–110n–1+…+а110+а0)+(bn10n+ +bn–110n–1+…+b110+b0)=(аn+bn)10n+(аn–1+bn–1)10n–1+…(а0+b0) - преобразования выполнены на основе свойств ассоциативности и коммутативности сложения, а также дистрибутивности умножения относительно сложения. Сумму (аn+bn)10n+(аn–1+bn–1)10n–1+…(а0+b0), вообще говоря, нельзя рассматривать как десятичную запись числа х+у, так как коэффициенты перед степенями 10 могут быть больше 9. Лишь в случае, когда все суммы аk+bk, не превосходят 9, операцию сложения можно считать законченной. В противном случае выбираем наименьшее k, для которого аk+bk10. Если аk+bk10, то из того, что 0аk9 и 0bk 9, следует неравенство 0 аk+bk 18 и поэтому аk+bk можно представить в виде аk+bk=10+сk, где 0сk9. Но тогда (аk+bk)·10k=(10+сk)·10k=10k +1+сk10k. В силу свойств сложения и умножения в (аn+bn)10n+(аn–1+bn–1)10n–1+…(а0+b0) слагаемые (аk+1+b k+1)10k++(аk+bk)10k могут быть заменены на (аk+1+bk+1+1)10k +1+сk10k. После этого рассматриваем коэффициенты аn+bn, аn–1+bn–1,+…аk+1+bk+1+1, выбираем наименьшее s, при котором коэффициент больше 9, и повторяем описанную процедуру. Через n шагов придем к выражению вида: х+у=(сп+10)10n+…+с0, где сп0, или х+у=10n +1+сп10n+…+с0, и где для всех n выполняется равенство 0сп10. Тем самым получена десятичная запись числа х+у.
В случае когда десятичные записи слагаемых имеют разное количество цифр, надо приписать к числу, имеющему меньшее количество цифр, несколько нулей впереди, уравняв количество цифр в обоих слагаемых. После этого применяется описанный выше процесс сложения.
В общем виде алгоритм сложения натуральных чисел, записанных в десятичной системе счисления, формулируют так:
Записывают второе слагаемое под первым так, чтобы соответствующие разряды находилось друг под другом.
Складывают единицы первого разряда. Если сумма меньше десяти записывают ее в разряд единиц ответа и переходят к следующему разряду (десятков).
Если сумма единиц больше или равна десяти, то представляют ее в виде а0+b0=1·10+с0, где с0 - однозначное число; записывают с0, в разряд единиц ответа и прибавляют 1 к десяткам первого слагаемого, после чего переходят к разряду десятков.
Повторяют те же действия с десятками, потом с сотнями и процесс заканчивается, когда оказываются сложенными цифры старших разрядов. При этом, если их сумма больше или равна десяти, то приписываем впереди обоих слагаемых нули, увеличиваем нуль перед первым слагаемым на 1 и выполняем сложение 1+0=1.
Замечание. В этом алгоритме (как и в некоторых других) для краткости употребляется термин «цифра» вместо «однозначное число, изображаемое цифрой».
- Министерство образования и науки украины
- Содержание
- Пояснительная записка
- Структура курса
- Модуль 1. Множества
- Тема 1. Множества и операции над ними
- Введение
- 1. Понятие множества и элемента множества
- 2.Способы задания множества
- 3. Отношения между множествами. Подмножество
- Примеры
- 4. Круги Эйлера-Венна
- Практическая работа. Понятие множества
- Тема 2. Операции над множествами
- 1. Пересечение множеств
- 2. Объединение множеств
- 3. Законы пересечения и объединения множеств
- Определение. Для любых множеств а, в и с выполняются равенства:
- 4. Вычитание множеств. Дополнение подмножества
- Практическая работа. Операции над множествами
- Вопросы к изучению
- Основные понятия
- Обозначения
- Практическая часть
- Тема 2.1. Понятие разбиения множества на классы
- 1. Понятие разбиения множества на классы
- Практическая работа. Разбиение множества на классы
- Вопросы к изучению
- Обозначения
- Правила
- Тема 2.2. Декартово произведение множеств
- 1. Декартово произведение множеств
- 2. Свойства операции нахождения декартова произведения
- 3. Кортеж. Длина кортежа
- Практическая работа. Декартово произведение
- Вопросы к изучению
- Обозначения
- Правила
- Тема 3. Понятие соответствия Содержание
- 1. Понятие соответствия между множествами
- Рассмотрим примеры соответствий, изучаемых в начальном курсе математики.
- 2. Способы задания соответствий
- 3. Соответствие обратное данному
- 4. Взаимно однозначные соответствия
- 5. Равномощные множества
- Практическая работа. Соответствия между двумя множествами
- Тема 4. Числовые функции
- 1. Понятие функции. Способы задания функций
- 2. Прямая и обратная пропорциональности
- Основные понятия темы
- Основные выводы, замечания
- Тема 5. Отношения на множестве
- 1. Понятие отношения между элементами одного множества
- 2. Способы задания отношений
- 3. Свойства бинарных отношений
- Практическая работа. Отношения на множестве
- Тема 6. Выражение. Уравнение. Неравенство
- Выражения и их тождественные преобразования.
- 1. Выражения и их тождественные преобразования
- 3. Уравнения с одной переменной
- 4. Неравенства с одной переменной
- Практическая работа. Выражения и их преобразования. Числовые равенства и неравенства с одной переменной.
- Практическая работа. Уравнения и неравенства с одной переменной.
- Контрольная (зачетная) работа
- Модуль 2. Математические утверждения и их структура
- Тема 7. Математические понятия Содержание
- 1. Математические понятия. Объем и содержание понятия
- Пусть заданы два понятия а и b. Объемы их обозначим соответственно а и в.
- 2. Отношение рода и вида между понятиями
- 4. Требования к определению понятий
- 5. Неявные определения
- Практическая работа. Математические понятия
- Вопросы к изучению
- Представления о математических понятиях -
- Обозначения
- Тема 8. Высказывания и высказывательные формы
- 2. Конъюнкция и дизъюнкция высказываний
- 3. Конъюнкция и дизъюнкция высказывательных форм
- Практическая работа. Высказывания и высказывательные формы
- Тема 8.1. Высказывания с квантором. Отрицание высказываний и высказывательных форм
- 1. Высказывания с кванторами
- 2. Истинность высказываний с кванторами
- 3. Отрицание высказываний и высказывательных форм
- Практическая работа. Высказывания с кванторами. Отрицание высказываний и высказывательных форм
- Тема 8.2. Отношения следования и равносильности между предложениями
- 1. Отношения следования между предложениями
- 2. Отношения равносильности между предложениями
- Практическая работа. Отношения следования и равносильности между предложениями
- Вопросы к изучению
- Основные понятия темы
- Обозначения
- Тема 8.3. Структура теоремы. Виды теорем
- 1. Структура теоремы
- 2. Отличие теоремы от правила
- 3. Виды теорем
- Практическая работа. Структура теоремы. Виды теорем
- Тема 9. Математическое доказательство
- 1. Понятие умозаключения.
- 2. Дедуктивные умозаключения Умозаключения, построенные по схеме
- 3. Индуктивные умозаключения. Полная индукция
- Все s1, s2,..., Sп исчерпывают весь класс s (4) Все s есть р
- 4. Неполная индукция
- 5. Математическая индукция
- 6. Аналогия
- 7. Умозаключения «от противного»
- 8. Некоторые виды неправильных умозаключений
- 9. Логическая структура математической задачи
- 10. Закон достаточного основания и аксиоматический метод в математике
- Практическая работа. Математическое доказательство
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 10. Текстовая задача и процесс ее решения
- 1. Роль и место задач в начальном курсе математики. Функции текстовых задач
- 2. Структура процесса решения текстовой задачи
- 2. Методы и способы решения текстовых задач
- 3. Этапы решения задачи и приемы их выполнения
- 1. Анализ задачи
- 4. Поиск и составление плана решения задачи
- 5. Осуществление плана решения задачи
- 6. Проверка решения задачи
- 7. Моделирование в процессе решения текстовых задач
- Практическая работа. Текстовая задача и процесс ее решения
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 11. Комбинаторные задачи и их решение
- 1. Комбинаторика
- 2. Правила суммы и произведения
- 3. Размещения и сочетания
- Практическая работа. Комбинаторные задачи и их решение
- Вопросы для коллоквиума
- Модуль 3. Целые неотрицательные числа
- Тема 12. Аксиоматическое построение системы натуральных чисел
- 1. Из истории возникновения понятия натурального числа
- 2. Об аксиоматическом способе построения теории
- 3. Основные понятия и аксиомы. Определение натурального числа
- 4. Количественные натуральные числа. Счет
- Семинарское занятие. История возникновения понятия натурального числа Вопросы к изучению
- Вопросы для самоконтроля
- Задания для самостоятельной работы
- Тема 13. Теоретико-множественный подход к построению натурального ряда чисел. Теоретико-множественный смысл арифметических действий.
- 1. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- 2. Теоретико-множественный смысл суммы
- 3. Теоретико-множественный смысл разности
- 4. Теоретико-множественный смысл произведения
- 5. Теоретико-множественный смысл частного натуральных чисел
- Практическая работа. Теоретико–множественный смысл суммы, разности, произведения, частного и отношения «меньше»
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Тема 14. Позиционные и непозиционные системы исчисления
- 1. Позиционные и непозиционные системы счисления
- 2. Запись числа в десятичной системе счисления
- Практическая работа. Запись целых неотрицательных чисел
- Теоретическая часть
- Основные понятия темы
- Тема 15. Алгоритмы действий над целыми неотрицательными числами
- 1. Алгоритм сложения
- 2. Алгоритм вычитания
- 3. Алгоритм умножения
- 4. Алгоритм деления
- Практическая работа. Алгоритмы арифметических действий
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Тема 16. Отношение делимости и его свойства Содержание
- Признаки делимости.
- Наименьшее общее кратное и наибольший общий делитель.
- 1. Отношение делимости и его свойства
- 2. Признаки делимости
- 3. Наименьшее общее кратное и наибольший общий делитель
- 4. Простые числа
- 5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- Практическая работа. Делимость натуральных чисел
- Тема 17. О расширении множества натуральных чисел
- 1. Понятие дроби
- 2. Положительные рациональные числа
- 3. Запись положительных рациональных чисел в виде десятичных дробей
- 4. Действительные числа
- Практическая работа. Действия над положительными действительными числами
- Вопросы к коллоквиуму
- Теоретико-множественный смысл отношения «меньше», «равно»
- Теоретико-множественный смысл суммы.
- Теоретико-множественный смысл разности.
- Признаки делимости.
- Тема 18. Натуральное число как мера величины. Измерение величин
- 1. Понятие положительной скалярной величины и ее измерения
- 2. Смысл натурального числа, полученного в результате измерения величины
- 3. Смысл суммы и разности
- Практическая работа. Понятие положительной скалярной величины
- Практическая работа. Обоснование выбора действий при решении текстовых задач в начальной школе
- Теоретическая часть Вопросы к изучению
- Определения, теоремы, выводы
- Тема 19. Геометрические фигуры на плоскости и их свойства
- 1. Понятие геометрической фигуры
- 2. Углы
- 3. Параллельные и перпендикулярные прямые
- 4. Треугольники
- 5. Четырехугольники
- Параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны.
- 1. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
- 2. У параллелограмма противолежащие стороны и противолежащие углы раны.
- 6. Многоугольники
- 7. Окружность и круг
- 8. Построение геометрических фигур на плоскости.
- 1. Построить на данной прямой отрезок со, равный данному отрезку ав.
- 2. Отложить от данной полупрямой в данную полуплоскость угол, равный данному углу.
- 3. Найти середину отрезка.
- 4. Построить биссектрису данного угла.
- 5. Через данную точку провести прямую, перпендикулярную данной прямой.
- 9. Преобразования геометрических фигур. Понятие преобразования
- 1. Симметрия относительно точки (центральная симметрия).
- 2. Симметрия относительно прямой (осевая симметрия).
- 3. Гомотетия.
- 10. Движения и равенство фигур
- Практическая работа. Решение геометрических задач
- Практическая работа. Основные задачи на построение на плоскости
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 20. Изображения пространственных фигур
- 1. Свойства параллельного проектирования
- 2. Многогранники и их изображение
- 3. Шар, цилиндр, конус и их изображение
- Практическая работа. Изображение пространственных фигур на плоскости
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 21. Геометрические величины
- 1. Длина отрезка и ее измерение
- 2. Величина угла и ее измерение
- 3. Понятие площади фигуры и ее измерение
- 4. Площадь многоугольника
- 5. Площадь произвольной плоской фигуры и ее измерение
- Практическая работа. Геометрические величины
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Правила, замечания
- Практическая часть
- Список литературы
- Учебник для студентов высших педагогических учебных заведений специальности: «начальное обучение»
- Глузман Неля Анатольевна Кандидат педагогических наук, доцент, заведующий кафедрой методик начального и дошкольного образования рвуз «Крымский гуманитарный университет» (г. Ялта)