logo
Учебник Математики

6. Многоугольники

Обобщением понятия треугольника и четырехугольника является понятие многоугольника. Определяется оно через понятие ломаной.

Ломаной А1А2А3…Аn называется фигура, которая состоит из точек А1,А2,А3,…,Аn, и соединяющих их отрезков А1А2, А2А3, ... Аn-1Аn.

Точки А1,А2,А3,…,Аn называются вершинами ломаной, а отрезки А1А2, А2А3, ... Аn-1Аn - ее звеньями.

Если ломаная не имеет самопересечений, то она называется простой.

Если ее концы совпадают, то она называется замкнутой. О ломаных, изображенных на рисунке 8, можно сказать, что: А1,А2,А3,А45,А6 -простая; А1,А2,А3 - простая замкнутая; А1,А2,А3,А4 - замкнутая ломаная, но она не является простой, так как имеет самопересечение. Длиной ломаной называется сумма длин ее звеньев.

Рис. 8

Известно, что длина ломаной не меньше длины отрезка, соединяющего ее концы.

Многоугольником называется простая замкнутая ломаная, если ее соседние звенья не лежат на одной прямой.

Вершины ломаной называются вершинами многоугольника, а ее звенья - его сторонами. Отрезки, соединяющие несоседние вершины, называются диагоналями.

Любой многоугольник разделяет плоскость на две части, одна из которых называется внутренней, а другая - внешней областью многоугольника (или плоским многоугольником).

Различают выпуклые и невыпуклые многоугольники. Выпуклый многоугольник называется правильным, если у него все стороны и все углы равны.

Правильным является равносторонний треугольник, правильным четырехугольником - квадрат.

Углом выпуклого многоугольника при данной вершине называется угол, образуемый его сторонами, сходящимися в этой вершине.

Известно, что сумма углов выпуклого n-угольника равна 180°- (n - 2).

В геометрии, кроме выпуклых и невыпуклых многоугольников, рассматривают еще многоугольные фигуры.

Многоугольной фигурой называется объединение конечного множества многоугольников (рис. 9).

Многоугольники, из которых состоит многоугольная фигура, могут не иметь общих внутренних точек (рис.9,1,2); могут иметь общие внутренние точки (рис.9,3).

Говорят, что многоугольная фигура Р состоит из многоугольных фигур, если она является их объединением, а сами фигуры не имеют общих внутренних точек. Например, о многоугольных фигурах, изображенных на рисунке 9 можно сказать, что они состоят из двух многоугольных фигур или что они разбиты (каждая) на две многоугольные фигуры.