3. Алгоритм умножения
Умножение однозначных чисел можно выполнить, основываясь на определении этого действия. Но чтобы всякий раз не обращаться к определению, все произведения однозначных чисел записывают в особую таблицу, называемую таблицей умножения однозначных чисел, и запоминают.
Естественно, что смысл умножения сохраняется и для многозначных чисел, но меняется техника вычислений. Произведение многозначных чисел, как правило, находят, выполняя умножение столбиком, по определенному алгоритму. Выясним, каким образом возникает этот алгоритм, какие теоретические факты лежат в его основе.
Умножим, например, столбиком 428 на 263.
428
263
1284
+ 2568
856__
112564
Видим, что для получения ответа нам пришлось умножить 428 на 3, 6 и 2, т.е. умножить многозначное число на однозначное; но, умножив на 6, результат записали по - особому, поместив единицы числа 2568 под десятками числа 1284, так как умножали на 60 и получили число 25680, но нуль в конце записи опустили. Слагаемое 856 - это результат умножения на 2 сотни, т.е. число 85600. Кроме того, нам пришлось найти сумму многозначных чисел.
Итак, чтобы выполнять умножение многозначного числа на многозначное, необходимо уметь:
- умножать многозначное число на однозначное и на степень десяти;
- складывать многозначные числа.
Сначала рассмотрим умножение многозначного числа на однозначное.
Умножим, например, 428 на 3. Согласно правилу записи чисел в десятичной системе счисления, 428 можно представить в виде 4102+210+8 и тогда 4283=(4102+210+8)3. На основании дистрибутивности умножения относительно сложения раскроем скобки: (4102+(210)3+83. Произведения в скобках могут быть найдены по таблице умножения однозначных чисел: 12102+610+24. Видим, что умножение многозначного числа на однозначное свелось к умножению однозначных чисел. Но чтобы получить окончательный результат, надо преобразовать выражение 12102+610+24 - коэффициенты перед степенями 10 должны быть меньше 10. Для этого представим число 12 в виде 1·10+2, а число 24 в виде 2·10+4. Затем в выражении (1·10+2)·102+6·10+(2·10+4) раскроем скобки: 1·103+2·102+6·10+2·10+4. На основании ассоциативности сложения и дистрибутивности умножения относительно сложения сгруппируем слагаемые 6·10 и 2·10 и вынесем 10 за скобки: 1·103+2·102+(6+2)·10+4. Сумма 6+2 есть сумма однозначных чисел и может быть найдена по таблице сложения: 1· 103+2·102+8·10+4. Полученное выражение есть десятичная запись числа 1284, т. е. 428·3=1284.
Таким образом, умножение многозначного числа на однозначное основывается на:
записи чисел в десятичной системе счисления;
свойствах сложения и умножения;
таблицах сложения и умножения однозначных чисел.
Выведем правило умножения многозначного числа на однозначное в общем виде.
Пусть требуется умножить х=аn10n+аn–110n–1+…+а110+а0 на однозначное число у:
ху=(аn10n+аn–110n–1+…+а110+а0)у=(аnу)10n+(аn–1 у)10n–1+…+а0у причем преобразования выполнены на основании свойств умножения. После этого, используя таблицу умножения, заменяем все произведения аkу, где 0kn, соответствующими значениями аkу=bk10+с и получаем:
ху=(bп10+сп)+(bп-110+сп-1)10п-1+...+(b110+с1)10+(b010+с0)= =bп10п+1+(сп+bп-1)10п+...+(с1+b0)10+с0. По таблице сложения заменяем суммы сk+bk-1, где 0kn и k=0,1,2, ...,n, их значениями. Если, например, с0 однозначно, то последняя цифра произведения равна с0 . Если же с0=10+m0, то последняя цифра равна m0 , а к скобке (с1 + b0) надо прибавить 1. Продолжая этот процесс, получим десятичную запись числа х у.
Описанный процесс позволяет сформулировать в общем виде алгоритм умножения многозначного числа на однозначное число у.
Записываем второе число под первым.
Умножаем цифры разряда единиц числа х на число у. Если произведение меньше 10, его записываем в разряд единиц ответа и переходим к следующему разряду (десятков).
Если произведение цифр единиц числа х на число у больше или равно 10, то представляем его в виде 10q1+с0, где с0 – однозначное число; записываем с0 в разряд единиц ответа и запоминаем q1 - перенос в следующий разряд.
Умножаем цифры разряда десятков на число у, прибавляем к полученному произведению число q1 и повторяем процесс, описанный пп. 2 и 3.
Процесс умножения заканчивается, когда окажется умноженной цифра старшего разряда.
Как известно, умножение числа х на число вида 10k сводится к приписыванию к десятичной записи данного числа k нулей. Покажем это. Умножим число х=аn10n+аn–110n–1+…+а110+а0 на 10k:
(аn10n+аn–110n–1+…+а110+а0)10k=аn10n+k+аn–110n+k–1+…+а010k. Полученное выражение является суммой разрядных слагаемых числа , так как равно
an10n+k+аn–110n+k–1+…+а010k+010k-1+010k–2+…+010 +0.
Например,
347·103=(3·102+4·10+7)·103=3·105+4·104+7·103=3·105+4·104+7·103+0·102+ +0·10+0= =347000
Заметим еще, что умножение на число у10k , где у – однозначное число сводится к умножению на однозначное число у и на число 10k . Например, 52300=52(3102)=(523)102=156102=15600.
Рассмотрим теперь алгоритм умножения многозначного числа на многозначное. Обратимся сначала к примеру, с которого начинали, т.е. к произведению 428263. Представим число 263 в виде суммы 2102+610+3 и запишем произведение 428(2102 + 610 + 3). Оно, согласно дистрибутивности умножения относительно сложения, равно 428(2102) + 428(610) + 4283. Отсюда, применив ассоциативное свойство умножения, получим: (4282) 102+(4286)10+4283. Видим, что умножение многозначного числа 428 на многозначное число 263 свелось к умножению многозначного числа 428 на однозначные числа 2,6 и 3, а также на степени 10.
Рассмотрим умножение многозначного числа на многозначное в общем виде.
Пусть х и у - многозначные числа, причем у=bm10m+bm–110m–1+…+b0. В силу дистрибутивности умножения относительно сложения, а также ассоциативности умножения можно записать:
ху=х(bm10m+bm–110m–1+…+b0)=(хbm)10m+(хbm–1)10m–1+…+b0х. Последовательно умножая число х на однозначные числа bm, bm–1, …, b0, а затем на 10m, 10m–1, …, 1, получаем слагаемые, сумма которых равна х у.
Сформулирует в общем виде алгоритм умножения числа х=на число у =.
Записываем множитель х под ним второй множитель у.
Умножаем число х на младший разряд b0 числа у и записываем произведение х b0 под числом у.
Умножаем число х на следующий разряд b1 числа у и записываем произведение хb1, но со сдвигом на один разряд влево, что соответствует умножению х b1 на 10.
Продолжаем вычисление произведений до вычисления хbk.
Полученные k+1 произведения складываем.
Изучение алгоритма умножения многозначных чисел в начальном курсе математики, как правило, проходит в соответствии с выделенными этапами. Различия имеются только в записи. Например, при обосновании случая умножения многозначного числа на однозначное пишут:
428 3 = (400 + 20 + 8) 3 = 400 3 + 20 3 + 8 3 = 1200 + 60 + 24 = 1284.
Основой выполненных преобразований являются:
представление первого множителя в виде суммы разрядных слагаемых (т.е. запись числа в десятичной системе счисления);
правило умножения суммы на число (или дистрибутивность умножения относительно сложения);
умножение «круглых» (т.е. оканчивающихся нулями) чисел на однозначное число, что сводится к умножению однозначных чисел.
- Министерство образования и науки украины
- Содержание
- Пояснительная записка
- Структура курса
- Модуль 1. Множества
- Тема 1. Множества и операции над ними
- Введение
- 1. Понятие множества и элемента множества
- 2.Способы задания множества
- 3. Отношения между множествами. Подмножество
- Примеры
- 4. Круги Эйлера-Венна
- Практическая работа. Понятие множества
- Тема 2. Операции над множествами
- 1. Пересечение множеств
- 2. Объединение множеств
- 3. Законы пересечения и объединения множеств
- Определение. Для любых множеств а, в и с выполняются равенства:
- 4. Вычитание множеств. Дополнение подмножества
- Практическая работа. Операции над множествами
- Вопросы к изучению
- Основные понятия
- Обозначения
- Практическая часть
- Тема 2.1. Понятие разбиения множества на классы
- 1. Понятие разбиения множества на классы
- Практическая работа. Разбиение множества на классы
- Вопросы к изучению
- Обозначения
- Правила
- Тема 2.2. Декартово произведение множеств
- 1. Декартово произведение множеств
- 2. Свойства операции нахождения декартова произведения
- 3. Кортеж. Длина кортежа
- Практическая работа. Декартово произведение
- Вопросы к изучению
- Обозначения
- Правила
- Тема 3. Понятие соответствия Содержание
- 1. Понятие соответствия между множествами
- Рассмотрим примеры соответствий, изучаемых в начальном курсе математики.
- 2. Способы задания соответствий
- 3. Соответствие обратное данному
- 4. Взаимно однозначные соответствия
- 5. Равномощные множества
- Практическая работа. Соответствия между двумя множествами
- Тема 4. Числовые функции
- 1. Понятие функции. Способы задания функций
- 2. Прямая и обратная пропорциональности
- Основные понятия темы
- Основные выводы, замечания
- Тема 5. Отношения на множестве
- 1. Понятие отношения между элементами одного множества
- 2. Способы задания отношений
- 3. Свойства бинарных отношений
- Практическая работа. Отношения на множестве
- Тема 6. Выражение. Уравнение. Неравенство
- Выражения и их тождественные преобразования.
- 1. Выражения и их тождественные преобразования
- 3. Уравнения с одной переменной
- 4. Неравенства с одной переменной
- Практическая работа. Выражения и их преобразования. Числовые равенства и неравенства с одной переменной.
- Практическая работа. Уравнения и неравенства с одной переменной.
- Контрольная (зачетная) работа
- Модуль 2. Математические утверждения и их структура
- Тема 7. Математические понятия Содержание
- 1. Математические понятия. Объем и содержание понятия
- Пусть заданы два понятия а и b. Объемы их обозначим соответственно а и в.
- 2. Отношение рода и вида между понятиями
- 4. Требования к определению понятий
- 5. Неявные определения
- Практическая работа. Математические понятия
- Вопросы к изучению
- Представления о математических понятиях -
- Обозначения
- Тема 8. Высказывания и высказывательные формы
- 2. Конъюнкция и дизъюнкция высказываний
- 3. Конъюнкция и дизъюнкция высказывательных форм
- Практическая работа. Высказывания и высказывательные формы
- Тема 8.1. Высказывания с квантором. Отрицание высказываний и высказывательных форм
- 1. Высказывания с кванторами
- 2. Истинность высказываний с кванторами
- 3. Отрицание высказываний и высказывательных форм
- Практическая работа. Высказывания с кванторами. Отрицание высказываний и высказывательных форм
- Тема 8.2. Отношения следования и равносильности между предложениями
- 1. Отношения следования между предложениями
- 2. Отношения равносильности между предложениями
- Практическая работа. Отношения следования и равносильности между предложениями
- Вопросы к изучению
- Основные понятия темы
- Обозначения
- Тема 8.3. Структура теоремы. Виды теорем
- 1. Структура теоремы
- 2. Отличие теоремы от правила
- 3. Виды теорем
- Практическая работа. Структура теоремы. Виды теорем
- Тема 9. Математическое доказательство
- 1. Понятие умозаключения.
- 2. Дедуктивные умозаключения Умозаключения, построенные по схеме
- 3. Индуктивные умозаключения. Полная индукция
- Все s1, s2,..., Sп исчерпывают весь класс s (4) Все s есть р
- 4. Неполная индукция
- 5. Математическая индукция
- 6. Аналогия
- 7. Умозаключения «от противного»
- 8. Некоторые виды неправильных умозаключений
- 9. Логическая структура математической задачи
- 10. Закон достаточного основания и аксиоматический метод в математике
- Практическая работа. Математическое доказательство
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 10. Текстовая задача и процесс ее решения
- 1. Роль и место задач в начальном курсе математики. Функции текстовых задач
- 2. Структура процесса решения текстовой задачи
- 2. Методы и способы решения текстовых задач
- 3. Этапы решения задачи и приемы их выполнения
- 1. Анализ задачи
- 4. Поиск и составление плана решения задачи
- 5. Осуществление плана решения задачи
- 6. Проверка решения задачи
- 7. Моделирование в процессе решения текстовых задач
- Практическая работа. Текстовая задача и процесс ее решения
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 11. Комбинаторные задачи и их решение
- 1. Комбинаторика
- 2. Правила суммы и произведения
- 3. Размещения и сочетания
- Практическая работа. Комбинаторные задачи и их решение
- Вопросы для коллоквиума
- Модуль 3. Целые неотрицательные числа
- Тема 12. Аксиоматическое построение системы натуральных чисел
- 1. Из истории возникновения понятия натурального числа
- 2. Об аксиоматическом способе построения теории
- 3. Основные понятия и аксиомы. Определение натурального числа
- 4. Количественные натуральные числа. Счет
- Семинарское занятие. История возникновения понятия натурального числа Вопросы к изучению
- Вопросы для самоконтроля
- Задания для самостоятельной работы
- Тема 13. Теоретико-множественный подход к построению натурального ряда чисел. Теоретико-множественный смысл арифметических действий.
- 1. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- 2. Теоретико-множественный смысл суммы
- 3. Теоретико-множественный смысл разности
- 4. Теоретико-множественный смысл произведения
- 5. Теоретико-множественный смысл частного натуральных чисел
- Практическая работа. Теоретико–множественный смысл суммы, разности, произведения, частного и отношения «меньше»
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Тема 14. Позиционные и непозиционные системы исчисления
- 1. Позиционные и непозиционные системы счисления
- 2. Запись числа в десятичной системе счисления
- Практическая работа. Запись целых неотрицательных чисел
- Теоретическая часть
- Основные понятия темы
- Тема 15. Алгоритмы действий над целыми неотрицательными числами
- 1. Алгоритм сложения
- 2. Алгоритм вычитания
- 3. Алгоритм умножения
- 4. Алгоритм деления
- Практическая работа. Алгоритмы арифметических действий
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Тема 16. Отношение делимости и его свойства Содержание
- Признаки делимости.
- Наименьшее общее кратное и наибольший общий делитель.
- 1. Отношение делимости и его свойства
- 2. Признаки делимости
- 3. Наименьшее общее кратное и наибольший общий делитель
- 4. Простые числа
- 5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- Практическая работа. Делимость натуральных чисел
- Тема 17. О расширении множества натуральных чисел
- 1. Понятие дроби
- 2. Положительные рациональные числа
- 3. Запись положительных рациональных чисел в виде десятичных дробей
- 4. Действительные числа
- Практическая работа. Действия над положительными действительными числами
- Вопросы к коллоквиуму
- Теоретико-множественный смысл отношения «меньше», «равно»
- Теоретико-множественный смысл суммы.
- Теоретико-множественный смысл разности.
- Признаки делимости.
- Тема 18. Натуральное число как мера величины. Измерение величин
- 1. Понятие положительной скалярной величины и ее измерения
- 2. Смысл натурального числа, полученного в результате измерения величины
- 3. Смысл суммы и разности
- Практическая работа. Понятие положительной скалярной величины
- Практическая работа. Обоснование выбора действий при решении текстовых задач в начальной школе
- Теоретическая часть Вопросы к изучению
- Определения, теоремы, выводы
- Тема 19. Геометрические фигуры на плоскости и их свойства
- 1. Понятие геометрической фигуры
- 2. Углы
- 3. Параллельные и перпендикулярные прямые
- 4. Треугольники
- 5. Четырехугольники
- Параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны.
- 1. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
- 2. У параллелограмма противолежащие стороны и противолежащие углы раны.
- 6. Многоугольники
- 7. Окружность и круг
- 8. Построение геометрических фигур на плоскости.
- 1. Построить на данной прямой отрезок со, равный данному отрезку ав.
- 2. Отложить от данной полупрямой в данную полуплоскость угол, равный данному углу.
- 3. Найти середину отрезка.
- 4. Построить биссектрису данного угла.
- 5. Через данную точку провести прямую, перпендикулярную данной прямой.
- 9. Преобразования геометрических фигур. Понятие преобразования
- 1. Симметрия относительно точки (центральная симметрия).
- 2. Симметрия относительно прямой (осевая симметрия).
- 3. Гомотетия.
- 10. Движения и равенство фигур
- Практическая работа. Решение геометрических задач
- Практическая работа. Основные задачи на построение на плоскости
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 20. Изображения пространственных фигур
- 1. Свойства параллельного проектирования
- 2. Многогранники и их изображение
- 3. Шар, цилиндр, конус и их изображение
- Практическая работа. Изображение пространственных фигур на плоскости
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 21. Геометрические величины
- 1. Длина отрезка и ее измерение
- 2. Величина угла и ее измерение
- 3. Понятие площади фигуры и ее измерение
- 4. Площадь многоугольника
- 5. Площадь произвольной плоской фигуры и ее измерение
- Практическая работа. Геометрические величины
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Правила, замечания
- Практическая часть
- Список литературы
- Учебник для студентов высших педагогических учебных заведений специальности: «начальное обучение»
- Глузман Неля Анатольевна Кандидат педагогических наук, доцент, заведующий кафедрой методик начального и дошкольного образования рвуз «Крымский гуманитарный университет» (г. Ялта)