logo
Учебник Математики

1. Пересечение множеств

Из элементов двух и более множеств можно образовать новые множества. Считают, что эти новые множества являются результатомопераций над множествами.

Пример

Пусть даны два множества: А = 2, 4, 6, 8  и В = 5, 6, 7, 8, 9.

Образуем множество С, в которое включим общие элементы множеств А и В: С = 6, 8 . Так, полученное множество С называют пересечением множеств А и В.

Определение. Пересечением множеств А и В называется множество, содержащее только такие элементы, которые принадлежат множеству А и множеству В.

Пересечение множеств А и В обозначают А  В. Тогда определение можно представить в символической записи:

х х и х .

Если изображать множества А и В при помощи кругов Эйлера, то пересечение данных множеств изобразится заштрихованной частью.

В том случае, когда множества А и В не имеют общих элементов, говорят, что их пересечение пусто и пишут: А  В = .

Замечание. Операция, при помощи которой находят пересечение множеств, называется также пересечением

Пример

Найдем пересечение множества А – четных натуральных чисел и множества В – двузначных натуральных чисел.

Характеристическое свойство элементов множества А – «быть четным натуральным числом», характеристическое свойство элементов множества В – «быть двузначным натуральным числом». Тогда, согласно определению, элементы пересечения данных множеств должны обладать свойством «быть четным и двузначным натуральным числом». Таким образом, множество А  В состоит из четных двузначных чисел (союз «и» в данном случае можно опустить). Полученное множество не пусто. Например, 24  АВ, поскольку число 24 четное и двузначное.

Пример

Найти пересечение множества А – четных натуральных чисел и множества В – натуральных чисел, кратных 4. Данные множества А и В бесконечные, и множество В – подмножество множества А. Поэтому элементами, принадлежащими множеству А и множеству В, будут элементы множества В. Следовательно, А  В = В.