Основные понятия темы
Число «нуль» с теоретико–множественных позиций – это число элементов пустого множества: 0 = n ().
Если отношение “меньше” рассматривать с теоретико–множественной точки зрения, то:
а b а b, где а = 1, 2, …,а, b = 1, 2, …, b
а b А В1 , где В1 В и В1 В, В1 , а = n (В), b = n (В).
Так как количественные натуральные числа связаны с конечными множествами, то действия над числами оказались связанными с действиями над множествами:
Сложение чисел – с объединением конечных непересекающихся множеств;
Вычитание чисел – с дополнением подмножества;
Умножение чисел – с объединением равночисленных попарно непересекающихся множеств;
Деление чисел – с разбиением множества на попарно непересекающиеся подмножества.
Было установлено, что:
а + b = n (А , где n (А ), b = n (В) и ;
а – b = n (А \ В), где а = n (А ), b = n (В) и В А;
а b = n (А 1 А 2… А n), где n (А1) = n (А2)= …= n (А n) = а и множества А 1, А 2, …, А n попарно не пересекаются;
а : b, то:
число элементов в каждом подмножестве разбиения множества А, если n (А) = а и b - число подмножеств;
число подмножеств в разбиении множества А, если n (А) = а и b – число элементов в каждом подмножестве.
Так как действия над числами получили теоретико–множественную трактовку, то такую же трактовку оказалось возможным дать и их свойствам.
Практическая часть
Обязательные задания
Почему на уроке, где изучается число «четыре», можно использовать картинку с изображением четырех яблок, четырех тетрадей, а можно воспользоваться и другими примерами четырехэлементных множеств?
Какой подход к определению отношения «меньше» используется при ознакомлении младших школьников с неравенством 3 < 4, если выполняются следующие действия: возьмем три розовых кружка и четыре синих и каждый розовый кружок наложим на синий; видим, что синий кружок остался незакрытым, значит, розовых кружков меньше, чем синих, поэтому можно записать: 3 < 4.
Исходя из различных определений отношения «меньше», объясните, почему 2 < 5?
Как, используя теоретико-множественный подход к числу, объяснить, что 4 = 4?
Каков теоретико-множественный смысл суммы: а) 3+5; б) 0+4; в) 0+0.
Дайте теоретико-множественное истолкование суммы k слагаемых и, используя полученный вывод, объясните теоретико-множественный смысл суммы: а) 3 + 4 + 2; б) 1 + 2 + 3 + 4.
Объясните, почему нижеприведенные задачи решаются сложением.
а) Дима сорвал 8 слив, Нина - 4. Сколько всего слив сорвали Дима и Нина вместе?
б) Из коробки взяли 6 красных карандашей и 4 синих. Сколько всего карандашей взяли из коробки?
Объясните с теоретико-множественной точки зрения смысл выражений: а) 8 - 3; б) 4 - 4; в) 4 - 0.
Объясните, почему нижеприведенные задачи решаются при помощи вычитания.
а) В корзине было 7 морковок, 3 из них отдали кроликам. Сколько морковок осталось?
б) На столе 8 чашек, их на 3 больше, чем стаканов. Сколько стаканов на столе?
в) На верхней полке шкафа 7 книг, а на нижней 4. На сколько книг больше на верхней полке, чем на нижней?
Обоснуйте выбор действий при решении задач.
а) На одной полке 5 книг, на другой на 3 больше. Сколько книг на двух полках?
б) Во дворе гуляли 6 мальчиков, а девочек на 2 меньше. Сколько всего детей гуляло во дворе?
Запишите, используя символы, правило вычитания суммы из числа и дайте его теоретико-множественное истолкование.
Используя определение произведения чисел через сумму, объясните, каков теоретико-множественный смысл произведения 2 4.
Раскройте теоретико-множественный смысл произведения 2 4, используя определение произведения чисел через декартово произведение множеств.
Объясните, почему следующие задачи решаются при помощи умножения.
а) На каждую из трех тарелок положили по 2 яблока. Сколько всего яблок положили?
б) Школьники посадили в парке 4 ряда деревьев, по 5 штук в ряду. Сколько деревьев они посадили?
Используя теоретико-множественный смысл действий над числами, обоснуйте выбор действий при решении задач.
а) Первоклассники заняли в кинотеатре 3 ряда, второклассники - 4 ряда, а третьеклассники - 5 рядов. Сколько учеников начальных классов было в кинотеатре, если в каждом ряду они занимали по 9 мест?
б) В саду 8 рядов деревьев, по 9 в каждом. Из них 39 яблонь, 18 груш, остальные сливы. Сколько сливовых деревьев в саду?
Какие рассуждения учащихся вы будете считать правильными при выполнении ими следующих заданий.
а) Вера и Надя сажали тюльпаны. Вера посадила 8 рядов тюльпанов, по 9 в каждом, а Надя 9 рядов по 8 тюльпанов.
Можно ли, не выполняя вычислений, утверждать, что Вера посадила столько же тюльпанов, сколько Надя?
Пользуясь данным условием, объясните, что означают выражения: 72+ 72; 722; 89-8.
б) В гараже в 6 рядов стояло по 9 машин. Из каждого ряда выехало 8 машин. Сколько машин осталось в гараже?
Объясните, что означают выражения, составленные по условию данной задачи: 9 6; 8 2; 8 6; 9 - 8; (9 - 8) 2; (9-8) 6.
Используя теоретико-множественный смысл частного, объясните смысл выражений: а) 10:2; б)5:1; в) 5:5.
Объясните, почему нижеприведенные задачи решаются при помощи деления. а) 15 редисок связали в пучки по 5 редисок в каждом. Сколько получилось пучков? б) 15 тетрадей раздали поровну 5 ученикам. Сколько тетрадей получил каждый?
Назовите отношения, которые рассматриваются в задачах, решите задачи арифметическим методом, выбор действий обоснуйте.
а) Для украшения елки девочка вырезала 4 звездочки, а флажков в 3 раза больше. Сколько флажков вырезала девочка?
б) У Коли в 4 раза больше открыток, чем у Вовы. А у Лены их на 20 меньше, чем у Коли. Сколько открыток у Лены, если у Вовы их 7?
в) Миша поймал 48 окуней, Саша - на 6 меньше, чем Миша, а Коля - в 7 раз меньше, чем Саша. Сколько окуней поймали все мальчики?
Какое правило является обобщением различных арифметических способов решения задачи. а) В коробке лежало 12 зеленых и 20 красных хлопушек. Все хлопушки раздали детям, по 4 каждому. Сколько ребят получили хлопушки? б) В лапту играли 8 девочек и 6 мальчиков. Они разделились на 2 команды. Сколько человек было в каждой команде?
Творческие задания
Докажите, что дистрибутивность умножения относительно сложения вытекает из равенства А (В С) = (А В) (А С), а относительно вычитания - из равенства (А \ В) С) = (А В) \ (А С).
Составьте сценарий практической работы для младших школьников по сравнению численностей множеств без их нахождения.
Проведите практическую работу, подтверждающую, что сумма 5 + 3 не зависит от выбора множеств, численности которых равны 5 и 3.
Докажите, что 0+0+…+0=0.
Докажите важное правило прибавления суммы к сумме, опираясь на теоретико-множественный подход к определению суммы: (a+b)+(c+d)=(a+c)+(b+d), (a+b)+(c+d)=(a+d)+(b+c)
Придумайте практическую работу по нахождению того, на сколько в одном множестве больше элементов (без нахождения их численности).
Опишите практическую работу в начальной школе, подтверждающую эквивалентность деления “на” и “по”.
- Министерство образования и науки украины
- Содержание
- Пояснительная записка
- Структура курса
- Модуль 1. Множества
- Тема 1. Множества и операции над ними
- Введение
- 1. Понятие множества и элемента множества
- 2.Способы задания множества
- 3. Отношения между множествами. Подмножество
- Примеры
- 4. Круги Эйлера-Венна
- Практическая работа. Понятие множества
- Тема 2. Операции над множествами
- 1. Пересечение множеств
- 2. Объединение множеств
- 3. Законы пересечения и объединения множеств
- Определение. Для любых множеств а, в и с выполняются равенства:
- 4. Вычитание множеств. Дополнение подмножества
- Практическая работа. Операции над множествами
- Вопросы к изучению
- Основные понятия
- Обозначения
- Практическая часть
- Тема 2.1. Понятие разбиения множества на классы
- 1. Понятие разбиения множества на классы
- Практическая работа. Разбиение множества на классы
- Вопросы к изучению
- Обозначения
- Правила
- Тема 2.2. Декартово произведение множеств
- 1. Декартово произведение множеств
- 2. Свойства операции нахождения декартова произведения
- 3. Кортеж. Длина кортежа
- Практическая работа. Декартово произведение
- Вопросы к изучению
- Обозначения
- Правила
- Тема 3. Понятие соответствия Содержание
- 1. Понятие соответствия между множествами
- Рассмотрим примеры соответствий, изучаемых в начальном курсе математики.
- 2. Способы задания соответствий
- 3. Соответствие обратное данному
- 4. Взаимно однозначные соответствия
- 5. Равномощные множества
- Практическая работа. Соответствия между двумя множествами
- Тема 4. Числовые функции
- 1. Понятие функции. Способы задания функций
- 2. Прямая и обратная пропорциональности
- Основные понятия темы
- Основные выводы, замечания
- Тема 5. Отношения на множестве
- 1. Понятие отношения между элементами одного множества
- 2. Способы задания отношений
- 3. Свойства бинарных отношений
- Практическая работа. Отношения на множестве
- Тема 6. Выражение. Уравнение. Неравенство
- Выражения и их тождественные преобразования.
- 1. Выражения и их тождественные преобразования
- 3. Уравнения с одной переменной
- 4. Неравенства с одной переменной
- Практическая работа. Выражения и их преобразования. Числовые равенства и неравенства с одной переменной.
- Практическая работа. Уравнения и неравенства с одной переменной.
- Контрольная (зачетная) работа
- Модуль 2. Математические утверждения и их структура
- Тема 7. Математические понятия Содержание
- 1. Математические понятия. Объем и содержание понятия
- Пусть заданы два понятия а и b. Объемы их обозначим соответственно а и в.
- 2. Отношение рода и вида между понятиями
- 4. Требования к определению понятий
- 5. Неявные определения
- Практическая работа. Математические понятия
- Вопросы к изучению
- Представления о математических понятиях -
- Обозначения
- Тема 8. Высказывания и высказывательные формы
- 2. Конъюнкция и дизъюнкция высказываний
- 3. Конъюнкция и дизъюнкция высказывательных форм
- Практическая работа. Высказывания и высказывательные формы
- Тема 8.1. Высказывания с квантором. Отрицание высказываний и высказывательных форм
- 1. Высказывания с кванторами
- 2. Истинность высказываний с кванторами
- 3. Отрицание высказываний и высказывательных форм
- Практическая работа. Высказывания с кванторами. Отрицание высказываний и высказывательных форм
- Тема 8.2. Отношения следования и равносильности между предложениями
- 1. Отношения следования между предложениями
- 2. Отношения равносильности между предложениями
- Практическая работа. Отношения следования и равносильности между предложениями
- Вопросы к изучению
- Основные понятия темы
- Обозначения
- Тема 8.3. Структура теоремы. Виды теорем
- 1. Структура теоремы
- 2. Отличие теоремы от правила
- 3. Виды теорем
- Практическая работа. Структура теоремы. Виды теорем
- Тема 9. Математическое доказательство
- 1. Понятие умозаключения.
- 2. Дедуктивные умозаключения Умозаключения, построенные по схеме
- 3. Индуктивные умозаключения. Полная индукция
- Все s1, s2,..., Sп исчерпывают весь класс s (4) Все s есть р
- 4. Неполная индукция
- 5. Математическая индукция
- 6. Аналогия
- 7. Умозаключения «от противного»
- 8. Некоторые виды неправильных умозаключений
- 9. Логическая структура математической задачи
- 10. Закон достаточного основания и аксиоматический метод в математике
- Практическая работа. Математическое доказательство
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 10. Текстовая задача и процесс ее решения
- 1. Роль и место задач в начальном курсе математики. Функции текстовых задач
- 2. Структура процесса решения текстовой задачи
- 2. Методы и способы решения текстовых задач
- 3. Этапы решения задачи и приемы их выполнения
- 1. Анализ задачи
- 4. Поиск и составление плана решения задачи
- 5. Осуществление плана решения задачи
- 6. Проверка решения задачи
- 7. Моделирование в процессе решения текстовых задач
- Практическая работа. Текстовая задача и процесс ее решения
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 11. Комбинаторные задачи и их решение
- 1. Комбинаторика
- 2. Правила суммы и произведения
- 3. Размещения и сочетания
- Практическая работа. Комбинаторные задачи и их решение
- Вопросы для коллоквиума
- Модуль 3. Целые неотрицательные числа
- Тема 12. Аксиоматическое построение системы натуральных чисел
- 1. Из истории возникновения понятия натурального числа
- 2. Об аксиоматическом способе построения теории
- 3. Основные понятия и аксиомы. Определение натурального числа
- 4. Количественные натуральные числа. Счет
- Семинарское занятие. История возникновения понятия натурального числа Вопросы к изучению
- Вопросы для самоконтроля
- Задания для самостоятельной работы
- Тема 13. Теоретико-множественный подход к построению натурального ряда чисел. Теоретико-множественный смысл арифметических действий.
- 1. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- 2. Теоретико-множественный смысл суммы
- 3. Теоретико-множественный смысл разности
- 4. Теоретико-множественный смысл произведения
- 5. Теоретико-множественный смысл частного натуральных чисел
- Практическая работа. Теоретико–множественный смысл суммы, разности, произведения, частного и отношения «меньше»
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Тема 14. Позиционные и непозиционные системы исчисления
- 1. Позиционные и непозиционные системы счисления
- 2. Запись числа в десятичной системе счисления
- Практическая работа. Запись целых неотрицательных чисел
- Теоретическая часть
- Основные понятия темы
- Тема 15. Алгоритмы действий над целыми неотрицательными числами
- 1. Алгоритм сложения
- 2. Алгоритм вычитания
- 3. Алгоритм умножения
- 4. Алгоритм деления
- Практическая работа. Алгоритмы арифметических действий
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Тема 16. Отношение делимости и его свойства Содержание
- Признаки делимости.
- Наименьшее общее кратное и наибольший общий делитель.
- 1. Отношение делимости и его свойства
- 2. Признаки делимости
- 3. Наименьшее общее кратное и наибольший общий делитель
- 4. Простые числа
- 5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- Практическая работа. Делимость натуральных чисел
- Тема 17. О расширении множества натуральных чисел
- 1. Понятие дроби
- 2. Положительные рациональные числа
- 3. Запись положительных рациональных чисел в виде десятичных дробей
- 4. Действительные числа
- Практическая работа. Действия над положительными действительными числами
- Вопросы к коллоквиуму
- Теоретико-множественный смысл отношения «меньше», «равно»
- Теоретико-множественный смысл суммы.
- Теоретико-множественный смысл разности.
- Признаки делимости.
- Тема 18. Натуральное число как мера величины. Измерение величин
- 1. Понятие положительной скалярной величины и ее измерения
- 2. Смысл натурального числа, полученного в результате измерения величины
- 3. Смысл суммы и разности
- Практическая работа. Понятие положительной скалярной величины
- Практическая работа. Обоснование выбора действий при решении текстовых задач в начальной школе
- Теоретическая часть Вопросы к изучению
- Определения, теоремы, выводы
- Тема 19. Геометрические фигуры на плоскости и их свойства
- 1. Понятие геометрической фигуры
- 2. Углы
- 3. Параллельные и перпендикулярные прямые
- 4. Треугольники
- 5. Четырехугольники
- Параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны.
- 1. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
- 2. У параллелограмма противолежащие стороны и противолежащие углы раны.
- 6. Многоугольники
- 7. Окружность и круг
- 8. Построение геометрических фигур на плоскости.
- 1. Построить на данной прямой отрезок со, равный данному отрезку ав.
- 2. Отложить от данной полупрямой в данную полуплоскость угол, равный данному углу.
- 3. Найти середину отрезка.
- 4. Построить биссектрису данного угла.
- 5. Через данную точку провести прямую, перпендикулярную данной прямой.
- 9. Преобразования геометрических фигур. Понятие преобразования
- 1. Симметрия относительно точки (центральная симметрия).
- 2. Симметрия относительно прямой (осевая симметрия).
- 3. Гомотетия.
- 10. Движения и равенство фигур
- Практическая работа. Решение геометрических задач
- Практическая работа. Основные задачи на построение на плоскости
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 20. Изображения пространственных фигур
- 1. Свойства параллельного проектирования
- 2. Многогранники и их изображение
- 3. Шар, цилиндр, конус и их изображение
- Практическая работа. Изображение пространственных фигур на плоскости
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 21. Геометрические величины
- 1. Длина отрезка и ее измерение
- 2. Величина угла и ее измерение
- 3. Понятие площади фигуры и ее измерение
- 4. Площадь многоугольника
- 5. Площадь произвольной плоской фигуры и ее измерение
- Практическая работа. Геометрические величины
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Правила, замечания
- Практическая часть
- Список литературы
- Учебник для студентов высших педагогических учебных заведений специальности: «начальное обучение»
- Глузман Неля Анатольевна Кандидат педагогических наук, доцент, заведующий кафедрой методик начального и дошкольного образования рвуз «Крымский гуманитарный университет» (г. Ялта)