logo
Учебник Математики

4. Построить биссектрису данного угла.

Из вершины А данного угла как из центра описываем окружность произвольного радиуса (рис. 15). Пусть В и С - точки ее пересечения со сторонами угла. Из точек В и С описываем окружности одного радиуса. ПустьD - точка их пересечения, отличная от А. Тогда полупрямая АD и есть биссектриса угла А. Докажем это. Для этого рассмотрим треугольники АВD и АСD. Они равны по трем сторонам. Отсюда следует равенство соответствующих углов DАВ и DАС, т.е. луч АD делит угол ВАС пополам и, следовательно, является биссектрисой.