logo
Учебник Математики

Практическая часть

Обязательные задания

  1. Решите различными способами (практическим, арифметическим, алгебраическим, графическим) следующую задачу: «В гараже стояло 10 машин. После того, как несколько машин уехало, осталось 6. Сколько машин выехало из гаража?».

  2. С противоположных концов катка длиной 180 м бегут навстречу друг другу два мальчика. Через сколько секунд они встретятся, если начнут бег одновременно и если один пробегает 9 м в секунду, а другой 6 м в секунду?

Объясните, используя условия данной задачи, смысл следующих выражений: а) 9+6; б)180:9; в) 180:6; г) 180:(9+6). Какое из этих выражений является решающей моделью данной задачи?

  1. Запишите решение задачи в виде выражения:

а) Самолет пролетел за 2 ч а км. Сколько километров он пролетит за 5 ч?

б) Из двух городов, расстояние между которыми 9 км, одновременно навстречу друг другу выехали легковой автомобиль и грузовой и встретились через t ч. Скорость легкового автомобиля v км/ч. Найдите скорость грузовика.

в) Из двух городов одновременно навстречу друг другу выехали автомобиль и мотоцикл и встретились через t ч. Найдите расстояние между городами, если скорость автомобиля v1 км/ч, а скорость мотоцикла v2 км/ч.

  1. Два пассажира метро, начавшие одновременно один спуск, другой подъем на движущихся лестницах метро, поравнялись через 30 с. Вычислите длину лестницы, если скорость ее движения 1 м/с.Решите задачу двумя арифметическими способами.

  2. Расстояние между городами А и В 520 км. В 8 ч из А в В выехал автобус со скоростью 56 км/ч, а в 11 ч того же дня из В в А выехал грузовой автомобиль со скоростью 32 км/ч. На каком расстоянии от А встретятся машины? Решение задачи запишите по действиям и в виде выражения.

  3. Из двух городов, расстояние между которыми 960 км, вышли одновременно навстречу друг другу два поезда и встретились через 8 ч после выхода. Найдите скорость каждого поезда, если один проходил в час на 16 км больше другого.

  4. Решите нижеприведенные задачи арифметическим методом; решение запишите по действиям с пояснениями.

а) Из А в В выехал мотоциклист, проезжавший в час 48 км. Через 45 мин из В в А выехал другой мотоциклист, скорость которого была 50 км/ч. Зная, что расстояние АВ равно 330 км, найдите, на каком расстоянии от В мотоциклисты встретятся.

б) Из двух городов, расстояние между которыми 484 км, выехали одновременно навстречу друг другу велосипедист и мотоциклист. Через 4 ч расстояние между ними оказалось 292 км. Определите скорость велосипедиста и мотоциклиста, если скорость мотоциклиста в 3 раза больше скорости велосипедиста.

  1. Установите, достаточно ли данных для ответа на требование задачи:

а) Из двух сел, расстояние между которыми 36 км, вышли одновременно навстречу друг другу два пешехода и встретились. Скорость одного пешехода 4 км/ч. С какой скоростью шел другой пешеход?

б) Расстояние между станциями 780 км. Одновременно навстречу друг другу с этих станций вышли два поезда и через 6 ч встретились. Найдите скорость каждого поезда, если скорость одного из них на 10 км/ч больше скорости другого.

В случае если нельзя ответить на требование задачи, дополните ее условие недостающими данными и решите задачу.

  1. Есть ли среди нижеприведенных задачи с лишними данными:

а) Расстояние между плотом и катером, которые движутся по р навстречу друг другу, 52 км. Скорость плота 4 км/ч, а скорость кат 9 км/ч. Как изменится расстояние между ними через час?

б) Почтальон живет на расстоянии 24 км от почтового отделен Путь от дома до почты он проехал за 3 ч на велосипеде со скоростью 8 км/ч, а обратный путь по той же дороге он проехал со скоростью 6 км/ч. На какой путь почтальон потратил меньше времени и на сколько часов?

В случае если в задаче есть лишние данные, то исключите их и запишите получившуюся задачу.

  1. Два теплохода отправились одновременно от пристани в одном и том же направлении. Скорость одного теплохода 25 км/ч, другого 20 км/ч. Первый пришел к конечной остановке на 4 ч раньше, чем второй. Найдите расстояние между пристанью и конечной остановкой.

Постройте вспомогательную модель задачи, используя таблицу. Объясните, используя условие данной задачи, смысл следующих выражений: а) 20  4; б)25-20; в) (20  4): (25-20). Есть ли среди этих выражений решающая модель задачи? Запишите решение задачи в виде выражения и найдите его значение. Выполните проверку, решив задачу алгебраическим методом.

  1. Решите следующие задачи арифметическим методом; решение запишите по действиям и выполните проверку:

а) Из двух городов, расстояние между которыми 260 км, одновременно выехали два поезда в одном направлении. Скорость шедшего впереди поезда 50 км/ч, а второго - 70 км/ч. Через какое время один поезд догонит другой?

б) Из пункта А выехал автобус со скоростью 40 км/ч и через 12 мин нагнал пешехода, который вышел из пункта В одновременно с началом движения автобуса из пункта А. Скорость пешехода 5 км/ч. Какое расстояние между пунктами А и В?

в) Скорость одного конькобежца на 2 м/с больше скорости другого. Если второй начнет движение на 20 с раньше первого, то первый стартуя с того же места, что и второй, догонит его через 80 с. Определите скорости спортсменов.

  1. Два самолета вылетели одновременно из одного города в два различных пункта. Кто из них долетит до места назначения быстрее, если первому из них нужно пролететь вдвое большее расстояние, но зато он летит в два раза быстрее, чем второй?

  2. От двух пристаней, расстояние между которыми по реке 640 км, вышли одновременно навстречу друг другу два теплохода. Собственная скорость теплоходов одинакова. Скорость течения реки 2 км/ч. Теплоход, идущий по течению, за 9 ч проходит 198 км. Через сколько часов теплоходы встретятся?

  3. Есть ли среди следующих задач задачи с недостающими или избыточными данными:

а) Турист проехал поездом и на лошади 288 км, причем на лошади он проехал 48 км. Поездом он ехал 4 ч, а на лошади - 3 ч. С какой скоростью ехал турист на лошади, если скорость поезда 60 км/ч?

б) Турист проехал поездом и на лошади 288 км. Поездом он ехал 4 ч на лошади - 3 ч. С какой скоростью ехал турист на лошади?

в) Турист проехал поездом и на лошади 288 км. Поездом он ехал 4 а на лошади - 3 ч. С какой скоростью ехал турист на лошади, если поезд шел со скоростью 60 км/ч?

Творческие задания

  1. Решите следующие задачи арифметическим методом; решение запишите по действиям с пояснением:

а) На путь по течению реки моторная лодка затратила 6 ч, а на об­ратный путь - 10 ч. Скорость лодки в стоячей воде 16 км/ч. Какова скорость течения реки?

б) Собственная скорость моторной лодки в 8 раз больше скорости течения реки. Найдите собственную скорость лодки и скорость тече­ния реки, если, двигаясь по течению, лодка за 4 ч проплыла 108 км.

в) На школьных соревнованиях по плаванию один ученик проплыл некоторое расстояние по течению реки за 24 с и то же расстояние против течения за 40 с. Определите собственную скорость пловца, считая ее постоянной от начала и до конца заплыва, если скорость течения реки равна 0,25 м/с.

  1. Решите задачи арифметическим методом, установив предварительно, о каких процессах в них идет речь, какие величины рассматриваются и в каких зависимостях они находятся:

а) Длина прямоугольного поля 1536 м, а ширина 625 м. Один тракторист может вспахать это поле за 16 дней, а другой за 12 дней. Какую площадь вспашут оба тракториста, работая вместе в течение 5 дней?

б) В мастерской было два куска ткани: один длиной 104 м, другой -84 м. Из всей ткани сшили одинаковые платья, причем из первого куска получилось на 5 платьев больше, чем из второго. Сколько всего платьев сшили из этой ткани ?

в) Один экскаватор вынимает на 60 м3 в час больше земли, чем дру­гой. Оба экскаватора вынули вместе 10320 м3 земли, причем первый работал 20 ч, а второй - 18 ч. С какой производительностью работал каждый экскаватор?

г) Два человека чистили картофель. Один очищал в минуту 2 картофелины, а второй - 3 картофелины. Вместе они очистили 400 штук. Сколько времени работал каждый, если второй проработал на 25 мин больше первого?

д) Бассейн вмещает 2700 м3 воды и наполняется тремя трубами. Первая и вторая трубы вместе могут наполнить бассейн за 12 ч, а первая и третья наполняют его вместе за 15ч. За сколько часов каждая труба в отдельности наполняет бассейн, если третья труба действует вдвое медленнее второй?