Практическая часть
Обязательные задания
Решите различными способами (практическим, арифметическим, алгебраическим, графическим) следующую задачу: «В гараже стояло 10 машин. После того, как несколько машин уехало, осталось 6. Сколько машин выехало из гаража?».
С противоположных концов катка длиной 180 м бегут навстречу друг другу два мальчика. Через сколько секунд они встретятся, если начнут бег одновременно и если один пробегает 9 м в секунду, а другой 6 м в секунду?
Объясните, используя условия данной задачи, смысл следующих выражений: а) 9+6; б)180:9; в) 180:6; г) 180:(9+6). Какое из этих выражений является решающей моделью данной задачи?
Запишите решение задачи в виде выражения:
а) Самолет пролетел за 2 ч а км. Сколько километров он пролетит за 5 ч?
б) Из двух городов, расстояние между которыми 9 км, одновременно навстречу друг другу выехали легковой автомобиль и грузовой и встретились через t ч. Скорость легкового автомобиля v км/ч. Найдите скорость грузовика.
в) Из двух городов одновременно навстречу друг другу выехали автомобиль и мотоцикл и встретились через t ч. Найдите расстояние между городами, если скорость автомобиля v1 км/ч, а скорость мотоцикла v2 км/ч.
Два пассажира метро, начавшие одновременно один спуск, другой подъем на движущихся лестницах метро, поравнялись через 30 с. Вычислите длину лестницы, если скорость ее движения 1 м/с.Решите задачу двумя арифметическими способами.
Расстояние между городами А и В 520 км. В 8 ч из А в В выехал автобус со скоростью 56 км/ч, а в 11 ч того же дня из В в А выехал грузовой автомобиль со скоростью 32 км/ч. На каком расстоянии от А встретятся машины? Решение задачи запишите по действиям и в виде выражения.
Из двух городов, расстояние между которыми 960 км, вышли одновременно навстречу друг другу два поезда и встретились через 8 ч после выхода. Найдите скорость каждого поезда, если один проходил в час на 16 км больше другого.
Решите нижеприведенные задачи арифметическим методом; решение запишите по действиям с пояснениями.
а) Из А в В выехал мотоциклист, проезжавший в час 48 км. Через 45 мин из В в А выехал другой мотоциклист, скорость которого была 50 км/ч. Зная, что расстояние АВ равно 330 км, найдите, на каком расстоянии от В мотоциклисты встретятся.
б) Из двух городов, расстояние между которыми 484 км, выехали одновременно навстречу друг другу велосипедист и мотоциклист. Через 4 ч расстояние между ними оказалось 292 км. Определите скорость велосипедиста и мотоциклиста, если скорость мотоциклиста в 3 раза больше скорости велосипедиста.
Установите, достаточно ли данных для ответа на требование задачи:
а) Из двух сел, расстояние между которыми 36 км, вышли одновременно навстречу друг другу два пешехода и встретились. Скорость одного пешехода 4 км/ч. С какой скоростью шел другой пешеход?
б) Расстояние между станциями 780 км. Одновременно навстречу друг другу с этих станций вышли два поезда и через 6 ч встретились. Найдите скорость каждого поезда, если скорость одного из них на 10 км/ч больше скорости другого.
В случае если нельзя ответить на требование задачи, дополните ее условие недостающими данными и решите задачу.
Есть ли среди нижеприведенных задачи с лишними данными:
а) Расстояние между плотом и катером, которые движутся по р навстречу друг другу, 52 км. Скорость плота 4 км/ч, а скорость кат 9 км/ч. Как изменится расстояние между ними через час?
б) Почтальон живет на расстоянии 24 км от почтового отделен Путь от дома до почты он проехал за 3 ч на велосипеде со скоростью 8 км/ч, а обратный путь по той же дороге он проехал со скоростью 6 км/ч. На какой путь почтальон потратил меньше времени и на сколько часов?
В случае если в задаче есть лишние данные, то исключите их и запишите получившуюся задачу.
Два теплохода отправились одновременно от пристани в одном и том же направлении. Скорость одного теплохода 25 км/ч, другого 20 км/ч. Первый пришел к конечной остановке на 4 ч раньше, чем второй. Найдите расстояние между пристанью и конечной остановкой.
Постройте вспомогательную модель задачи, используя таблицу. Объясните, используя условие данной задачи, смысл следующих выражений: а) 20 4; б)25-20; в) (20 4): (25-20). Есть ли среди этих выражений решающая модель задачи? Запишите решение задачи в виде выражения и найдите его значение. Выполните проверку, решив задачу алгебраическим методом.
Решите следующие задачи арифметическим методом; решение запишите по действиям и выполните проверку:
а) Из двух городов, расстояние между которыми 260 км, одновременно выехали два поезда в одном направлении. Скорость шедшего впереди поезда 50 км/ч, а второго - 70 км/ч. Через какое время один поезд догонит другой?
б) Из пункта А выехал автобус со скоростью 40 км/ч и через 12 мин нагнал пешехода, который вышел из пункта В одновременно с началом движения автобуса из пункта А. Скорость пешехода 5 км/ч. Какое расстояние между пунктами А и В?
в) Скорость одного конькобежца на 2 м/с больше скорости другого. Если второй начнет движение на 20 с раньше первого, то первый стартуя с того же места, что и второй, догонит его через 80 с. Определите скорости спортсменов.
Два самолета вылетели одновременно из одного города в два различных пункта. Кто из них долетит до места назначения быстрее, если первому из них нужно пролететь вдвое большее расстояние, но зато он летит в два раза быстрее, чем второй?
От двух пристаней, расстояние между которыми по реке 640 км, вышли одновременно навстречу друг другу два теплохода. Собственная скорость теплоходов одинакова. Скорость течения реки 2 км/ч. Теплоход, идущий по течению, за 9 ч проходит 198 км. Через сколько часов теплоходы встретятся?
Есть ли среди следующих задач задачи с недостающими или избыточными данными:
а) Турист проехал поездом и на лошади 288 км, причем на лошади он проехал 48 км. Поездом он ехал 4 ч, а на лошади - 3 ч. С какой скоростью ехал турист на лошади, если скорость поезда 60 км/ч?
б) Турист проехал поездом и на лошади 288 км. Поездом он ехал 4 ч на лошади - 3 ч. С какой скоростью ехал турист на лошади?
в) Турист проехал поездом и на лошади 288 км. Поездом он ехал 4 а на лошади - 3 ч. С какой скоростью ехал турист на лошади, если поезд шел со скоростью 60 км/ч?
Творческие задания
Решите следующие задачи арифметическим методом; решение запишите по действиям с пояснением:
а) На путь по течению реки моторная лодка затратила 6 ч, а на обратный путь - 10 ч. Скорость лодки в стоячей воде 16 км/ч. Какова скорость течения реки?
б) Собственная скорость моторной лодки в 8 раз больше скорости течения реки. Найдите собственную скорость лодки и скорость течения реки, если, двигаясь по течению, лодка за 4 ч проплыла 108 км.
в) На школьных соревнованиях по плаванию один ученик проплыл некоторое расстояние по течению реки за 24 с и то же расстояние против течения за 40 с. Определите собственную скорость пловца, считая ее постоянной от начала и до конца заплыва, если скорость течения реки равна 0,25 м/с.
Решите задачи арифметическим методом, установив предварительно, о каких процессах в них идет речь, какие величины рассматриваются и в каких зависимостях они находятся:
а) Длина прямоугольного поля 1536 м, а ширина 625 м. Один тракторист может вспахать это поле за 16 дней, а другой за 12 дней. Какую площадь вспашут оба тракториста, работая вместе в течение 5 дней?
б) В мастерской было два куска ткани: один длиной 104 м, другой -84 м. Из всей ткани сшили одинаковые платья, причем из первого куска получилось на 5 платьев больше, чем из второго. Сколько всего платьев сшили из этой ткани ?
в) Один экскаватор вынимает на 60 м3 в час больше земли, чем другой. Оба экскаватора вынули вместе 10320 м3 земли, причем первый работал 20 ч, а второй - 18 ч. С какой производительностью работал каждый экскаватор?
г) Два человека чистили картофель. Один очищал в минуту 2 картофелины, а второй - 3 картофелины. Вместе они очистили 400 штук. Сколько времени работал каждый, если второй проработал на 25 мин больше первого?
д) Бассейн вмещает 2700 м3 воды и наполняется тремя трубами. Первая и вторая трубы вместе могут наполнить бассейн за 12 ч, а первая и третья наполняют его вместе за 15ч. За сколько часов каждая труба в отдельности наполняет бассейн, если третья труба действует вдвое медленнее второй?
- Министерство образования и науки украины
- Содержание
- Пояснительная записка
- Структура курса
- Модуль 1. Множества
- Тема 1. Множества и операции над ними
- Введение
- 1. Понятие множества и элемента множества
- 2.Способы задания множества
- 3. Отношения между множествами. Подмножество
- Примеры
- 4. Круги Эйлера-Венна
- Практическая работа. Понятие множества
- Тема 2. Операции над множествами
- 1. Пересечение множеств
- 2. Объединение множеств
- 3. Законы пересечения и объединения множеств
- Определение. Для любых множеств а, в и с выполняются равенства:
- 4. Вычитание множеств. Дополнение подмножества
- Практическая работа. Операции над множествами
- Вопросы к изучению
- Основные понятия
- Обозначения
- Практическая часть
- Тема 2.1. Понятие разбиения множества на классы
- 1. Понятие разбиения множества на классы
- Практическая работа. Разбиение множества на классы
- Вопросы к изучению
- Обозначения
- Правила
- Тема 2.2. Декартово произведение множеств
- 1. Декартово произведение множеств
- 2. Свойства операции нахождения декартова произведения
- 3. Кортеж. Длина кортежа
- Практическая работа. Декартово произведение
- Вопросы к изучению
- Обозначения
- Правила
- Тема 3. Понятие соответствия Содержание
- 1. Понятие соответствия между множествами
- Рассмотрим примеры соответствий, изучаемых в начальном курсе математики.
- 2. Способы задания соответствий
- 3. Соответствие обратное данному
- 4. Взаимно однозначные соответствия
- 5. Равномощные множества
- Практическая работа. Соответствия между двумя множествами
- Тема 4. Числовые функции
- 1. Понятие функции. Способы задания функций
- 2. Прямая и обратная пропорциональности
- Основные понятия темы
- Основные выводы, замечания
- Тема 5. Отношения на множестве
- 1. Понятие отношения между элементами одного множества
- 2. Способы задания отношений
- 3. Свойства бинарных отношений
- Практическая работа. Отношения на множестве
- Тема 6. Выражение. Уравнение. Неравенство
- Выражения и их тождественные преобразования.
- 1. Выражения и их тождественные преобразования
- 3. Уравнения с одной переменной
- 4. Неравенства с одной переменной
- Практическая работа. Выражения и их преобразования. Числовые равенства и неравенства с одной переменной.
- Практическая работа. Уравнения и неравенства с одной переменной.
- Контрольная (зачетная) работа
- Модуль 2. Математические утверждения и их структура
- Тема 7. Математические понятия Содержание
- 1. Математические понятия. Объем и содержание понятия
- Пусть заданы два понятия а и b. Объемы их обозначим соответственно а и в.
- 2. Отношение рода и вида между понятиями
- 4. Требования к определению понятий
- 5. Неявные определения
- Практическая работа. Математические понятия
- Вопросы к изучению
- Представления о математических понятиях -
- Обозначения
- Тема 8. Высказывания и высказывательные формы
- 2. Конъюнкция и дизъюнкция высказываний
- 3. Конъюнкция и дизъюнкция высказывательных форм
- Практическая работа. Высказывания и высказывательные формы
- Тема 8.1. Высказывания с квантором. Отрицание высказываний и высказывательных форм
- 1. Высказывания с кванторами
- 2. Истинность высказываний с кванторами
- 3. Отрицание высказываний и высказывательных форм
- Практическая работа. Высказывания с кванторами. Отрицание высказываний и высказывательных форм
- Тема 8.2. Отношения следования и равносильности между предложениями
- 1. Отношения следования между предложениями
- 2. Отношения равносильности между предложениями
- Практическая работа. Отношения следования и равносильности между предложениями
- Вопросы к изучению
- Основные понятия темы
- Обозначения
- Тема 8.3. Структура теоремы. Виды теорем
- 1. Структура теоремы
- 2. Отличие теоремы от правила
- 3. Виды теорем
- Практическая работа. Структура теоремы. Виды теорем
- Тема 9. Математическое доказательство
- 1. Понятие умозаключения.
- 2. Дедуктивные умозаключения Умозаключения, построенные по схеме
- 3. Индуктивные умозаключения. Полная индукция
- Все s1, s2,..., Sп исчерпывают весь класс s (4) Все s есть р
- 4. Неполная индукция
- 5. Математическая индукция
- 6. Аналогия
- 7. Умозаключения «от противного»
- 8. Некоторые виды неправильных умозаключений
- 9. Логическая структура математической задачи
- 10. Закон достаточного основания и аксиоматический метод в математике
- Практическая работа. Математическое доказательство
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 10. Текстовая задача и процесс ее решения
- 1. Роль и место задач в начальном курсе математики. Функции текстовых задач
- 2. Структура процесса решения текстовой задачи
- 2. Методы и способы решения текстовых задач
- 3. Этапы решения задачи и приемы их выполнения
- 1. Анализ задачи
- 4. Поиск и составление плана решения задачи
- 5. Осуществление плана решения задачи
- 6. Проверка решения задачи
- 7. Моделирование в процессе решения текстовых задач
- Практическая работа. Текстовая задача и процесс ее решения
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 11. Комбинаторные задачи и их решение
- 1. Комбинаторика
- 2. Правила суммы и произведения
- 3. Размещения и сочетания
- Практическая работа. Комбинаторные задачи и их решение
- Вопросы для коллоквиума
- Модуль 3. Целые неотрицательные числа
- Тема 12. Аксиоматическое построение системы натуральных чисел
- 1. Из истории возникновения понятия натурального числа
- 2. Об аксиоматическом способе построения теории
- 3. Основные понятия и аксиомы. Определение натурального числа
- 4. Количественные натуральные числа. Счет
- Семинарское занятие. История возникновения понятия натурального числа Вопросы к изучению
- Вопросы для самоконтроля
- Задания для самостоятельной работы
- Тема 13. Теоретико-множественный подход к построению натурального ряда чисел. Теоретико-множественный смысл арифметических действий.
- 1. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- 2. Теоретико-множественный смысл суммы
- 3. Теоретико-множественный смысл разности
- 4. Теоретико-множественный смысл произведения
- 5. Теоретико-множественный смысл частного натуральных чисел
- Практическая работа. Теоретико–множественный смысл суммы, разности, произведения, частного и отношения «меньше»
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Тема 14. Позиционные и непозиционные системы исчисления
- 1. Позиционные и непозиционные системы счисления
- 2. Запись числа в десятичной системе счисления
- Практическая работа. Запись целых неотрицательных чисел
- Теоретическая часть
- Основные понятия темы
- Тема 15. Алгоритмы действий над целыми неотрицательными числами
- 1. Алгоритм сложения
- 2. Алгоритм вычитания
- 3. Алгоритм умножения
- 4. Алгоритм деления
- Практическая работа. Алгоритмы арифметических действий
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Тема 16. Отношение делимости и его свойства Содержание
- Признаки делимости.
- Наименьшее общее кратное и наибольший общий делитель.
- 1. Отношение делимости и его свойства
- 2. Признаки делимости
- 3. Наименьшее общее кратное и наибольший общий делитель
- 4. Простые числа
- 5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- Практическая работа. Делимость натуральных чисел
- Тема 17. О расширении множества натуральных чисел
- 1. Понятие дроби
- 2. Положительные рациональные числа
- 3. Запись положительных рациональных чисел в виде десятичных дробей
- 4. Действительные числа
- Практическая работа. Действия над положительными действительными числами
- Вопросы к коллоквиуму
- Теоретико-множественный смысл отношения «меньше», «равно»
- Теоретико-множественный смысл суммы.
- Теоретико-множественный смысл разности.
- Признаки делимости.
- Тема 18. Натуральное число как мера величины. Измерение величин
- 1. Понятие положительной скалярной величины и ее измерения
- 2. Смысл натурального числа, полученного в результате измерения величины
- 3. Смысл суммы и разности
- Практическая работа. Понятие положительной скалярной величины
- Практическая работа. Обоснование выбора действий при решении текстовых задач в начальной школе
- Теоретическая часть Вопросы к изучению
- Определения, теоремы, выводы
- Тема 19. Геометрические фигуры на плоскости и их свойства
- 1. Понятие геометрической фигуры
- 2. Углы
- 3. Параллельные и перпендикулярные прямые
- 4. Треугольники
- 5. Четырехугольники
- Параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны.
- 1. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
- 2. У параллелограмма противолежащие стороны и противолежащие углы раны.
- 6. Многоугольники
- 7. Окружность и круг
- 8. Построение геометрических фигур на плоскости.
- 1. Построить на данной прямой отрезок со, равный данному отрезку ав.
- 2. Отложить от данной полупрямой в данную полуплоскость угол, равный данному углу.
- 3. Найти середину отрезка.
- 4. Построить биссектрису данного угла.
- 5. Через данную точку провести прямую, перпендикулярную данной прямой.
- 9. Преобразования геометрических фигур. Понятие преобразования
- 1. Симметрия относительно точки (центральная симметрия).
- 2. Симметрия относительно прямой (осевая симметрия).
- 3. Гомотетия.
- 10. Движения и равенство фигур
- Практическая работа. Решение геометрических задач
- Практическая работа. Основные задачи на построение на плоскости
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 20. Изображения пространственных фигур
- 1. Свойства параллельного проектирования
- 2. Многогранники и их изображение
- 3. Шар, цилиндр, конус и их изображение
- Практическая работа. Изображение пространственных фигур на плоскости
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 21. Геометрические величины
- 1. Длина отрезка и ее измерение
- 2. Величина угла и ее измерение
- 3. Понятие площади фигуры и ее измерение
- 4. Площадь многоугольника
- 5. Площадь произвольной плоской фигуры и ее измерение
- Практическая работа. Геометрические величины
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Правила, замечания
- Практическая часть
- Список литературы
- Учебник для студентов высших педагогических учебных заведений специальности: «начальное обучение»
- Глузман Неля Анатольевна Кандидат педагогических наук, доцент, заведующий кафедрой методик начального и дошкольного образования рвуз «Крымский гуманитарный университет» (г. Ялта)