3. Уравнения с одной переменной
Возьмем два выражения с переменной: 4х и 5х + 2. Соединив их знаком равенства, получим предложение 4х = 5х + 2. Оно содержит переменную и при подстановке значений переменной обращается в высказывание.
Например, при х = -2 предложение 4х = 5х + 2 обращается в истинное числовое равенство 4-(-2) = 5-(-2) + 2, а при х = 1 - в ложное 4-1 = 5-1+2. Поэтому предложение 4х = 5х + 2 есть высказывательная форма. Ее называют уравнением с одной переменной.
В общем виде уравнение с одной переменной можно определить так:
Определение. Пусть f(х) и q(х) - два выражения с переменной х и областью определения X. Тогда высказывательная форма вида f(х) = q(х) называется уравнением с одной переменной.
Значение переменной х из множества X, при котором уравнение обращается в истинное числовое равенство, называется корнем уравнения (или его решением). Решить уравнение - это значит найти множество его корней.
Так, корнем уравнения 4х = 5х + 2, если рассматривать его на множестве R действительных чисел, является число -2. Других корней это уравнение не имеет. Значит множество его корней есть {-2}.
Пусть на множестве действительных чисел задано уравнение (х-1)(х+2)=0. Оно имеет два корня - числа 1 и -2. Следовательно, множество корней данного уравнения таково: {-2,- 1}.
Уравнение (3х + 1) 2 = 6х + 2, заданное на множестве действительных чисел, обращается в истинное числовое равенство при всех действительных значениях переменной х: если раскрыть скобки в левой части, то получим 6х + 2 = 6х + 2. В этом случае говорят, что его корнем является любое действительное число, а множеством корней множество всех действительных чисел.
Уравнение (3х + 1)-2 = 6х + 1, заданное на множестве действительных чисел, не обращается в истинное числовое равенство ни при одном действительном значении х: после раскрытия скобок в левой части получаем, что 6х + 2 = 6х + 1, что невозможно ни при одном х. В этом случае говорят, что данное уравнение не имеет корней и что множество его корней пусто.
Чтобы решить какое-либо уравнение, его сначала преобразовывают, заменяя другим, более простым; полученное уравнение опять преобразовывают, заменяя более простым, и т.д. Этот процесс продолжают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями заданного данного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называют равносильными.
Определение. Два уравнения f1(х) = q1(х) и f2(х) = q2(х) называются равносильными, если множества их корней совпадают.
Например, уравнения х2 - 9 = 0 и (2х + 6)(х - 3) = 0 равносильны так как оба имеют своими корнями числа 3 и -3. Равносильны и уравнения (3х + 1)-2 = 6х + 1 и х2 + 1 = 0, так как оба не имеют корней, т.е. множества их корней совпадают.
Определение. Замена уравнения равносильным ему уравнением называется равносильным преобразованием.
Выясним теперь, какие преобразования позволяют получать равносильные уравнения.
Теорема 1. Пусть уравнение f(х) = q(х) задано на множестве и h(х) - выражение, определенное на том же множестве. Тогда уравнение f(х) = q(х) (1) и f(х) + h(х) = q(х) + h(х) (2) равносильны.
Доказательство. Обозначим через Т1, - множество решений уравнения (1), а через Т2 - множество решений уравнения (2). Тогда уравнения (1) и (2) будут равносильны, если Т1 = Т2. Чтобы убедиться в этом, необходимо показать, что любой корень из Т1 является корнем уравнения (2) и, наоборот, любой корень из Т2, является корнем уравнения (1).
Пусть число а - корень уравнения (1). Тогда а Т1, и при подстановке в уравнение (1) обращает его в истинное числовое равенство f(а) = q(а), а выражение h(х) обращает в числовое выражение h(а) имеющее смысл на множестве X. Прибавим к обеим частям истинного равенства f(а) = q(а) числовое выражение h(а). Получим, согласно свойствам истинных числовых равенств, истинное числовое равенство f(а) + h(а) = q(а) + h(а), которое свидетельствует о том, что число а является корнем уравнения (2).
Итак, доказано, что каждый корень уравнения (1) является корнем и уравнения (2), т.е. Т1 Т2.
Пусть теперь а - корень уравнения (2). Тогда а Т2, и при подстановке в уравнение (2) обращает его в истинное числовое равенство f(а) + h(а) = q(а) + h(а). Прибавим к обеим частям этого равенства числовое выражение - h(а). Получим истинное числовое равенство f(а) = q(а), что число а - корень уравнения (1).
Итак, доказано, что каждый корень уравнения (2) является и корнем уравнения (1), т.е. Т2 Т1.
Так как Т1 Т2 и Т2 Т1, то по определению равных множеств Т1 = Т2, а значит, уравнения (1) и (2) равносильны.
Данную теорему 1 можно сформулировать иначе: если к обеим частям уравнения с областью определения Х прибавить одно и то же выражение с переменной, определенное на том же множестве, то получим новое уравнение, равносильное данному.
Из этой теоремы вытекают следствия, которые используются при решении уравнений:
1. Если к обеим частям уравнения прибавить одно и то же число, то получим уравнение, равносильное данному.
2. Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.
Теорема 2. Пусть уравнение f(х) = q(х), задано на множестве Х и h(х) - выражение, которое определено на том же множестве и не обращается в нуль ни при каких значениях х из множества X. Тогда уравнения f(х) = q(х) и f(х) h(х) = q(х) h(х) равносильны.
Доказательство этой теоремы аналогично доказательству теоремы 1.
Теорему 2 можно сформулировать иначе: если обе части уравнения с областью определения Х умножить на одно и то же выражение, которое определено на том же множестве и не обращается на нем в нуль, то получим новое уравнение, равносильное данному.
Из этой теоремы вытекает следствие: если обе части уравнения умножить (или разделить) на одно и то же число, отличное от нуля, то получим уравнение, равносильное данному.
Решим уравнение , х R, и обоснуем все преобразования, которые мы будем выполнять в процессе решения.
Преобразования | Обоснование преобразований |
1. Приведем выражения, стоящие в левой и правой частях уравнения, к общему знаменателю: | Выполнили тождественное преобразование выражения в левой части уравнения. |
2. Отбросим общий знаменатель: 6 – 2х = х. | Умножим на 6 обе части уравнения (теорема 2), получили уравнение, равносильное данному. |
3. Выражение – 2х переносим в правую часть уравнения с противоположным знаком: 6=х+2х. | Воспользовались следствием из теоремы 1, получили уравнение, равносильное предыдущему и, значит, данному. |
4. Приводим подобные члены в правой части уравнения: 6=3х. | Выполнили тождественное преобразование выражения. |
5. Разделим обе части уравнения на 3:х=2. | Воспользовались следствием из теоремы 2, получили уравнение, равносильное предыдущему, а значит, и данному. |
Так как все преобразования, которые мы выполняли, решая данное уравнение, были равносильными, то можно утверждать, что 2 - корень этого уравнения.
Если же в процессе решения уравнения не выполняются условия теорем 1 и 2, то может произойти потеря корней или могут появиться посторонние корни. Поэтому важно, осуществляя преобразования уравнения с целью получения более простого, следить за тем, что они приводили к уравнению, равносильному данному.
Рассмотрим, например, уравнение х(х-1)=2х, х R. Разделим обе части на х, получим уравнение х-1=2, откуда х=3, т.е. данное уравнение имеет единственный корень - число 3. Но верно ли это? Нетрудно видеть, что если в данное уравнение вместо переменной х подставить 0, оно обратится в истинное числовое равенство 0(0-1)=20. А это означает, что 0 - корень данного уравнения, который мы потеряли, выполняя преобразования. Проанализируем их. Первое, что сделали, - это разделили обе части уравнения на х, т. е. умножили выражение , но прих=0 оно не имеет смысла. Следовательно, мы не выполнили условие теоремы 2, что и привело к потере корня.
Чтобы убедиться в том, что множество корней данного уравнения состоит из двух чисел 0 и 3, приведем другое его решение. Перенесем выражение 2х из правой части в левую: х(х-1)-2х= 0. Вынесем в левой части уравнения за скобки х и приведем подобные члены: х(х–3)=0. Произведение двух множителей равно нулю в том и только в том случае, когда хотя бы один из них равен нулю, поэтому х или х-3 = 0. Отсюда получаем, что корни данного уравнения – 0 и 3.
В начальном курсе математики теоретической основой решения уравнений является взаимосвязь между компонентами и результатами действий. Например, решение уравнения (х9):24=3 обосновывается следующим образом. Так как неизвестное находится в делимом, то, чтобы найти делимое, надо делитель умножить на частное: х 9 =243, или х 9=72.
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель: х=72:9, или х=8, следовательно, корнем данного уравнения является число 8.
- Министерство образования и науки украины
- Содержание
- Пояснительная записка
- Структура курса
- Модуль 1. Множества
- Тема 1. Множества и операции над ними
- Введение
- 1. Понятие множества и элемента множества
- 2.Способы задания множества
- 3. Отношения между множествами. Подмножество
- Примеры
- 4. Круги Эйлера-Венна
- Практическая работа. Понятие множества
- Тема 2. Операции над множествами
- 1. Пересечение множеств
- 2. Объединение множеств
- 3. Законы пересечения и объединения множеств
- Определение. Для любых множеств а, в и с выполняются равенства:
- 4. Вычитание множеств. Дополнение подмножества
- Практическая работа. Операции над множествами
- Вопросы к изучению
- Основные понятия
- Обозначения
- Практическая часть
- Тема 2.1. Понятие разбиения множества на классы
- 1. Понятие разбиения множества на классы
- Практическая работа. Разбиение множества на классы
- Вопросы к изучению
- Обозначения
- Правила
- Тема 2.2. Декартово произведение множеств
- 1. Декартово произведение множеств
- 2. Свойства операции нахождения декартова произведения
- 3. Кортеж. Длина кортежа
- Практическая работа. Декартово произведение
- Вопросы к изучению
- Обозначения
- Правила
- Тема 3. Понятие соответствия Содержание
- 1. Понятие соответствия между множествами
- Рассмотрим примеры соответствий, изучаемых в начальном курсе математики.
- 2. Способы задания соответствий
- 3. Соответствие обратное данному
- 4. Взаимно однозначные соответствия
- 5. Равномощные множества
- Практическая работа. Соответствия между двумя множествами
- Тема 4. Числовые функции
- 1. Понятие функции. Способы задания функций
- 2. Прямая и обратная пропорциональности
- Основные понятия темы
- Основные выводы, замечания
- Тема 5. Отношения на множестве
- 1. Понятие отношения между элементами одного множества
- 2. Способы задания отношений
- 3. Свойства бинарных отношений
- Практическая работа. Отношения на множестве
- Тема 6. Выражение. Уравнение. Неравенство
- Выражения и их тождественные преобразования.
- 1. Выражения и их тождественные преобразования
- 3. Уравнения с одной переменной
- 4. Неравенства с одной переменной
- Практическая работа. Выражения и их преобразования. Числовые равенства и неравенства с одной переменной.
- Практическая работа. Уравнения и неравенства с одной переменной.
- Контрольная (зачетная) работа
- Модуль 2. Математические утверждения и их структура
- Тема 7. Математические понятия Содержание
- 1. Математические понятия. Объем и содержание понятия
- Пусть заданы два понятия а и b. Объемы их обозначим соответственно а и в.
- 2. Отношение рода и вида между понятиями
- 4. Требования к определению понятий
- 5. Неявные определения
- Практическая работа. Математические понятия
- Вопросы к изучению
- Представления о математических понятиях -
- Обозначения
- Тема 8. Высказывания и высказывательные формы
- 2. Конъюнкция и дизъюнкция высказываний
- 3. Конъюнкция и дизъюнкция высказывательных форм
- Практическая работа. Высказывания и высказывательные формы
- Тема 8.1. Высказывания с квантором. Отрицание высказываний и высказывательных форм
- 1. Высказывания с кванторами
- 2. Истинность высказываний с кванторами
- 3. Отрицание высказываний и высказывательных форм
- Практическая работа. Высказывания с кванторами. Отрицание высказываний и высказывательных форм
- Тема 8.2. Отношения следования и равносильности между предложениями
- 1. Отношения следования между предложениями
- 2. Отношения равносильности между предложениями
- Практическая работа. Отношения следования и равносильности между предложениями
- Вопросы к изучению
- Основные понятия темы
- Обозначения
- Тема 8.3. Структура теоремы. Виды теорем
- 1. Структура теоремы
- 2. Отличие теоремы от правила
- 3. Виды теорем
- Практическая работа. Структура теоремы. Виды теорем
- Тема 9. Математическое доказательство
- 1. Понятие умозаключения.
- 2. Дедуктивные умозаключения Умозаключения, построенные по схеме
- 3. Индуктивные умозаключения. Полная индукция
- Все s1, s2,..., Sп исчерпывают весь класс s (4) Все s есть р
- 4. Неполная индукция
- 5. Математическая индукция
- 6. Аналогия
- 7. Умозаключения «от противного»
- 8. Некоторые виды неправильных умозаключений
- 9. Логическая структура математической задачи
- 10. Закон достаточного основания и аксиоматический метод в математике
- Практическая работа. Математическое доказательство
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 10. Текстовая задача и процесс ее решения
- 1. Роль и место задач в начальном курсе математики. Функции текстовых задач
- 2. Структура процесса решения текстовой задачи
- 2. Методы и способы решения текстовых задач
- 3. Этапы решения задачи и приемы их выполнения
- 1. Анализ задачи
- 4. Поиск и составление плана решения задачи
- 5. Осуществление плана решения задачи
- 6. Проверка решения задачи
- 7. Моделирование в процессе решения текстовых задач
- Практическая работа. Текстовая задача и процесс ее решения
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 11. Комбинаторные задачи и их решение
- 1. Комбинаторика
- 2. Правила суммы и произведения
- 3. Размещения и сочетания
- Практическая работа. Комбинаторные задачи и их решение
- Вопросы для коллоквиума
- Модуль 3. Целые неотрицательные числа
- Тема 12. Аксиоматическое построение системы натуральных чисел
- 1. Из истории возникновения понятия натурального числа
- 2. Об аксиоматическом способе построения теории
- 3. Основные понятия и аксиомы. Определение натурального числа
- 4. Количественные натуральные числа. Счет
- Семинарское занятие. История возникновения понятия натурального числа Вопросы к изучению
- Вопросы для самоконтроля
- Задания для самостоятельной работы
- Тема 13. Теоретико-множественный подход к построению натурального ряда чисел. Теоретико-множественный смысл арифметических действий.
- 1. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- 2. Теоретико-множественный смысл суммы
- 3. Теоретико-множественный смысл разности
- 4. Теоретико-множественный смысл произведения
- 5. Теоретико-множественный смысл частного натуральных чисел
- Практическая работа. Теоретико–множественный смысл суммы, разности, произведения, частного и отношения «меньше»
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Тема 14. Позиционные и непозиционные системы исчисления
- 1. Позиционные и непозиционные системы счисления
- 2. Запись числа в десятичной системе счисления
- Практическая работа. Запись целых неотрицательных чисел
- Теоретическая часть
- Основные понятия темы
- Тема 15. Алгоритмы действий над целыми неотрицательными числами
- 1. Алгоритм сложения
- 2. Алгоритм вычитания
- 3. Алгоритм умножения
- 4. Алгоритм деления
- Практическая работа. Алгоритмы арифметических действий
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Тема 16. Отношение делимости и его свойства Содержание
- Признаки делимости.
- Наименьшее общее кратное и наибольший общий делитель.
- 1. Отношение делимости и его свойства
- 2. Признаки делимости
- 3. Наименьшее общее кратное и наибольший общий делитель
- 4. Простые числа
- 5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- Практическая работа. Делимость натуральных чисел
- Тема 17. О расширении множества натуральных чисел
- 1. Понятие дроби
- 2. Положительные рациональные числа
- 3. Запись положительных рациональных чисел в виде десятичных дробей
- 4. Действительные числа
- Практическая работа. Действия над положительными действительными числами
- Вопросы к коллоквиуму
- Теоретико-множественный смысл отношения «меньше», «равно»
- Теоретико-множественный смысл суммы.
- Теоретико-множественный смысл разности.
- Признаки делимости.
- Тема 18. Натуральное число как мера величины. Измерение величин
- 1. Понятие положительной скалярной величины и ее измерения
- 2. Смысл натурального числа, полученного в результате измерения величины
- 3. Смысл суммы и разности
- Практическая работа. Понятие положительной скалярной величины
- Практическая работа. Обоснование выбора действий при решении текстовых задач в начальной школе
- Теоретическая часть Вопросы к изучению
- Определения, теоремы, выводы
- Тема 19. Геометрические фигуры на плоскости и их свойства
- 1. Понятие геометрической фигуры
- 2. Углы
- 3. Параллельные и перпендикулярные прямые
- 4. Треугольники
- 5. Четырехугольники
- Параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны.
- 1. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
- 2. У параллелограмма противолежащие стороны и противолежащие углы раны.
- 6. Многоугольники
- 7. Окружность и круг
- 8. Построение геометрических фигур на плоскости.
- 1. Построить на данной прямой отрезок со, равный данному отрезку ав.
- 2. Отложить от данной полупрямой в данную полуплоскость угол, равный данному углу.
- 3. Найти середину отрезка.
- 4. Построить биссектрису данного угла.
- 5. Через данную точку провести прямую, перпендикулярную данной прямой.
- 9. Преобразования геометрических фигур. Понятие преобразования
- 1. Симметрия относительно точки (центральная симметрия).
- 2. Симметрия относительно прямой (осевая симметрия).
- 3. Гомотетия.
- 10. Движения и равенство фигур
- Практическая работа. Решение геометрических задач
- Практическая работа. Основные задачи на построение на плоскости
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 20. Изображения пространственных фигур
- 1. Свойства параллельного проектирования
- 2. Многогранники и их изображение
- 3. Шар, цилиндр, конус и их изображение
- Практическая работа. Изображение пространственных фигур на плоскости
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 21. Геометрические величины
- 1. Длина отрезка и ее измерение
- 2. Величина угла и ее измерение
- 3. Понятие площади фигуры и ее измерение
- 4. Площадь многоугольника
- 5. Площадь произвольной плоской фигуры и ее измерение
- Практическая работа. Геометрические величины
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Правила, замечания
- Практическая часть
- Список литературы
- Учебник для студентов высших педагогических учебных заведений специальности: «начальное обучение»
- Глузман Неля Анатольевна Кандидат педагогических наук, доцент, заведующий кафедрой методик начального и дошкольного образования рвуз «Крымский гуманитарный университет» (г. Ялта)