Практическая работа. Высказывания и высказывательные формы
Цель. Рассмотреть общие подходы к изучению математических предложений в начальном курсе математики, уметь раскрыть их логическую структуру. Рассмотреть правила определения значения истинности составного высказывания и нахождение множества истинности составных высказывательных форм.
Теоретическая часть
Вопросы к изучению
Высказывания и высказывательные формы.
Конъюнкция и дизъюнкция высказываний.
Конъюнкция и дизъюнкция высказывательных форм.
Основные понятия темы
высказывание;
значение истинности высказывания;
высказывательная форма;
область определения высказывательной формы;
множество истинности высказывательной формы;
элементарные высказывания;
логические связки;
составные высказывания;
конъюнкция высказываний и высказывательных форм;
дизъюнкция высказываний и высказывательных форм.
Правила
определения значения истинности составного высказывания;
нахождения множества истинности составных высказывательных форм: Т А В = ТА Т В, Т А В = ТА Т В,
Обозначения
А В – составное высказывание, читают «А и В»;
А В – составное высказывание, читают «А или В»
Практическая часть
Обязательные задания
Среди следующих предложений, рассматриваемых в начальном курсе математики, укажите высказывания и определите их значение истинности: а) (12-7)(6+3)=45; б) (15+12) : 310; в) в любом прямоугольнике противоположные стороны равны; г) (12 – х) 4 =24; д) среди четырехугольников есть такие, у которых все стороны равны; е) число z – двузначное; ж) произведение чисел 4070 и 8 меньше, чем сумма чисел 18396 и 14174; з) число 6 является корнем уравнения (12 – х) 4=24.
Какие предложения из упражнения 1 являются высказывательными формами? Подставьте в них значение переменной так, чтобы получилось: а) истинное высказывание; б) ложное высказывание.
Можно ли считать высказывательными формами следующие записи: а) х2 – 2х; б) 74+2=30; в) 4х +2у; г) 74 +2 30?
Найдите множество истинности высказывательной формы 2х – 100, заданной на множестве Х, если: а) х 2; б) 2 х 6; в) 2 х 6; г) х 3; д) 2х6; е) 2 х 6. Как можно записать, используя общепринятые символы, множество истинности каждого из данных предложений?
Изобразите на координатной плоскости множества истинности следующих предложений при условии, что х, у R: а) х = у; б) х = 2; в) у = 2х + 3; г)у = 2х; д) у = 2; е) у = 2х –3.
В следующих составных предложениях выделите составляющие их элементарные предложения и логические связки: а) В равнобедренном треугольнике АВС биссектриса ВD является медианой и высотой; б) х7; в) Если запись числа оканчивается цифрой 0, то число делится на 5; г) Треугольник является равносторонним тогда и только тогда, когда все его углы равны; д)Неверно, что число 17 делится на 3; е) Если ав = 0, то а = 0 или в =0.
Какова логическая структура (форма) следующих предложений: а)Средняя линия треугольника параллельна основанию и равна его половине; б)Если число делится на 2 и на 3, то оно делится на 6; в) Треугольник АВС не является равносторонним.
Приведите примеры математических предложений, имеющих логическую структуру вида: а) А и В; б) А или В; в) если А, то В.
Известно, что высказывание А истинно. Можно ли, зная лишь это, определить значение истинности высказывания: а) А В; б) А В?
Известно, что высказывание А – ложно. Можно ли, зная лишь это, определить значение истинности высказывания: а) А В; б) А В?
Определите значение истинности каждого высказывания: а) число 6 делится на 2 и на 3; б) число 123 делится на 3 и на 9; в) при делении 42 на 5 в остатке получится 2 или 5; г) 37; ж) 37.
Каждое из следующих предложений замените конъюнкцией либо дизъюнкцией, имеющей тот же смысл: а) число 7 принадлежит хотя бы одному из множеств А и В; б) квадратное уравнение имеет не более двух корней; в) каждое слагаемое суммы х+у+z делится на 3; г) по крайней мере одно из натуральных чисел n, n-1, n+1 четно.
Покажите, что, выполняя следующие задания, мы находим множество истинности конъюнкции и дизъюнкции высказывательных форм:
а) Даны числа: 31,53,409,348,20,3094,233,33,271,143,3,333,14,30. Выпишите все числа, в записи которых: 1) три цифры и есть цифра 3; 2) три цифры или есть цифра 3.
б) Из ряда 25, 12, 17, 5, 15, 36 выпишите те числа, которые: 1) делятся на 3 и 9; 2) делятся на 3 или на 9.
Выполните следующие задания и дайте обоснование предложенным ответам:
а) Постройте по два треугольника, принадлежащих множеству А, если оно состоит из: 1) прямоугольных и равнобедренных треугольников; 2) прямоугольных или равнобедренных треугольников.
б) Постройте два четырехугольника, у которых: 1) диагонали равны и есть прямой угол; 2) диагонали равны или есть прямой угол.
в) Запишите три числа, которые: 1) делятся на 4 и больше 12; 2) делятся на 4 или 12.
Решите следующие системы неравенств и объясните, что представляет собой любая система неравенств и множество ее решений с точки зрения логики:
а) б)
Решите уравнение (х-3)(х+2) (х-7)=0, х R. Использовалось ли вами понятие дизъюнкции высказывательных форм?
Вместо многоточия вставьте «и» либо «или»: а) х тогда и только тогда, когда х …х В. б) х тогда и только тогда, когда х …хВ.
Пусть А – множество ромбов, В – множество прямоугольников. Как называется четырехугольник, являющийся одновременно ромбом и прямоугольником? Как можно выразить множество К таких четырехугольников через множества А и В?
Творческие задания
А – множество четных натуральных чисел, В – множество натуральных чисел, меньших 20. Установите, какие из следующих высказываний истинны:
а) 5 или ; д) 44 А или 44 В;
б) 5 А и 5 В; е) 44 А и 44 В;
в) 8 А или 8 В; ж) 51 А или 51 В;
г) 8 А и 8 В; з) 51 А и 51 В.
Покажите, что выполнение учащимися начальных классов следующих заданий связано с понятием высказывательной формы, области ее определения и множества истинности: а) Из ряда чисел 1, 2, 3, 4, 5, 6, 7, 8, 9 выпишите, которые делятся на 3; б) Назови все числа, меньшие 7 (имеются в виду только целые неотрицательные числа).
Что можно сказать об истинности высказываний: «если аМ, то а», «если а делится на 3 и в не делится на 3, то а + в не делится на 3». Назовите простые высказывания, входящие в каждое из приведенных.
Являются ли высказываниями следующие записи: «3–2», «35», «таблицу умножения нужно знать наизусть», «а + 0 = а для любого натурального числа а»?
- Министерство образования и науки украины
- Содержание
- Пояснительная записка
- Структура курса
- Модуль 1. Множества
- Тема 1. Множества и операции над ними
- Введение
- 1. Понятие множества и элемента множества
- 2.Способы задания множества
- 3. Отношения между множествами. Подмножество
- Примеры
- 4. Круги Эйлера-Венна
- Практическая работа. Понятие множества
- Тема 2. Операции над множествами
- 1. Пересечение множеств
- 2. Объединение множеств
- 3. Законы пересечения и объединения множеств
- Определение. Для любых множеств а, в и с выполняются равенства:
- 4. Вычитание множеств. Дополнение подмножества
- Практическая работа. Операции над множествами
- Вопросы к изучению
- Основные понятия
- Обозначения
- Практическая часть
- Тема 2.1. Понятие разбиения множества на классы
- 1. Понятие разбиения множества на классы
- Практическая работа. Разбиение множества на классы
- Вопросы к изучению
- Обозначения
- Правила
- Тема 2.2. Декартово произведение множеств
- 1. Декартово произведение множеств
- 2. Свойства операции нахождения декартова произведения
- 3. Кортеж. Длина кортежа
- Практическая работа. Декартово произведение
- Вопросы к изучению
- Обозначения
- Правила
- Тема 3. Понятие соответствия Содержание
- 1. Понятие соответствия между множествами
- Рассмотрим примеры соответствий, изучаемых в начальном курсе математики.
- 2. Способы задания соответствий
- 3. Соответствие обратное данному
- 4. Взаимно однозначные соответствия
- 5. Равномощные множества
- Практическая работа. Соответствия между двумя множествами
- Тема 4. Числовые функции
- 1. Понятие функции. Способы задания функций
- 2. Прямая и обратная пропорциональности
- Основные понятия темы
- Основные выводы, замечания
- Тема 5. Отношения на множестве
- 1. Понятие отношения между элементами одного множества
- 2. Способы задания отношений
- 3. Свойства бинарных отношений
- Практическая работа. Отношения на множестве
- Тема 6. Выражение. Уравнение. Неравенство
- Выражения и их тождественные преобразования.
- 1. Выражения и их тождественные преобразования
- 3. Уравнения с одной переменной
- 4. Неравенства с одной переменной
- Практическая работа. Выражения и их преобразования. Числовые равенства и неравенства с одной переменной.
- Практическая работа. Уравнения и неравенства с одной переменной.
- Контрольная (зачетная) работа
- Модуль 2. Математические утверждения и их структура
- Тема 7. Математические понятия Содержание
- 1. Математические понятия. Объем и содержание понятия
- Пусть заданы два понятия а и b. Объемы их обозначим соответственно а и в.
- 2. Отношение рода и вида между понятиями
- 4. Требования к определению понятий
- 5. Неявные определения
- Практическая работа. Математические понятия
- Вопросы к изучению
- Представления о математических понятиях -
- Обозначения
- Тема 8. Высказывания и высказывательные формы
- 2. Конъюнкция и дизъюнкция высказываний
- 3. Конъюнкция и дизъюнкция высказывательных форм
- Практическая работа. Высказывания и высказывательные формы
- Тема 8.1. Высказывания с квантором. Отрицание высказываний и высказывательных форм
- 1. Высказывания с кванторами
- 2. Истинность высказываний с кванторами
- 3. Отрицание высказываний и высказывательных форм
- Практическая работа. Высказывания с кванторами. Отрицание высказываний и высказывательных форм
- Тема 8.2. Отношения следования и равносильности между предложениями
- 1. Отношения следования между предложениями
- 2. Отношения равносильности между предложениями
- Практическая работа. Отношения следования и равносильности между предложениями
- Вопросы к изучению
- Основные понятия темы
- Обозначения
- Тема 8.3. Структура теоремы. Виды теорем
- 1. Структура теоремы
- 2. Отличие теоремы от правила
- 3. Виды теорем
- Практическая работа. Структура теоремы. Виды теорем
- Тема 9. Математическое доказательство
- 1. Понятие умозаключения.
- 2. Дедуктивные умозаключения Умозаключения, построенные по схеме
- 3. Индуктивные умозаключения. Полная индукция
- Все s1, s2,..., Sп исчерпывают весь класс s (4) Все s есть р
- 4. Неполная индукция
- 5. Математическая индукция
- 6. Аналогия
- 7. Умозаключения «от противного»
- 8. Некоторые виды неправильных умозаключений
- 9. Логическая структура математической задачи
- 10. Закон достаточного основания и аксиоматический метод в математике
- Практическая работа. Математическое доказательство
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 10. Текстовая задача и процесс ее решения
- 1. Роль и место задач в начальном курсе математики. Функции текстовых задач
- 2. Структура процесса решения текстовой задачи
- 2. Методы и способы решения текстовых задач
- 3. Этапы решения задачи и приемы их выполнения
- 1. Анализ задачи
- 4. Поиск и составление плана решения задачи
- 5. Осуществление плана решения задачи
- 6. Проверка решения задачи
- 7. Моделирование в процессе решения текстовых задач
- Практическая работа. Текстовая задача и процесс ее решения
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 11. Комбинаторные задачи и их решение
- 1. Комбинаторика
- 2. Правила суммы и произведения
- 3. Размещения и сочетания
- Практическая работа. Комбинаторные задачи и их решение
- Вопросы для коллоквиума
- Модуль 3. Целые неотрицательные числа
- Тема 12. Аксиоматическое построение системы натуральных чисел
- 1. Из истории возникновения понятия натурального числа
- 2. Об аксиоматическом способе построения теории
- 3. Основные понятия и аксиомы. Определение натурального числа
- 4. Количественные натуральные числа. Счет
- Семинарское занятие. История возникновения понятия натурального числа Вопросы к изучению
- Вопросы для самоконтроля
- Задания для самостоятельной работы
- Тема 13. Теоретико-множественный подход к построению натурального ряда чисел. Теоретико-множественный смысл арифметических действий.
- 1. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- 2. Теоретико-множественный смысл суммы
- 3. Теоретико-множественный смысл разности
- 4. Теоретико-множественный смысл произведения
- 5. Теоретико-множественный смысл частного натуральных чисел
- Практическая работа. Теоретико–множественный смысл суммы, разности, произведения, частного и отношения «меньше»
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Тема 14. Позиционные и непозиционные системы исчисления
- 1. Позиционные и непозиционные системы счисления
- 2. Запись числа в десятичной системе счисления
- Практическая работа. Запись целых неотрицательных чисел
- Теоретическая часть
- Основные понятия темы
- Тема 15. Алгоритмы действий над целыми неотрицательными числами
- 1. Алгоритм сложения
- 2. Алгоритм вычитания
- 3. Алгоритм умножения
- 4. Алгоритм деления
- Практическая работа. Алгоритмы арифметических действий
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Тема 16. Отношение делимости и его свойства Содержание
- Признаки делимости.
- Наименьшее общее кратное и наибольший общий делитель.
- 1. Отношение делимости и его свойства
- 2. Признаки делимости
- 3. Наименьшее общее кратное и наибольший общий делитель
- 4. Простые числа
- 5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- Практическая работа. Делимость натуральных чисел
- Тема 17. О расширении множества натуральных чисел
- 1. Понятие дроби
- 2. Положительные рациональные числа
- 3. Запись положительных рациональных чисел в виде десятичных дробей
- 4. Действительные числа
- Практическая работа. Действия над положительными действительными числами
- Вопросы к коллоквиуму
- Теоретико-множественный смысл отношения «меньше», «равно»
- Теоретико-множественный смысл суммы.
- Теоретико-множественный смысл разности.
- Признаки делимости.
- Тема 18. Натуральное число как мера величины. Измерение величин
- 1. Понятие положительной скалярной величины и ее измерения
- 2. Смысл натурального числа, полученного в результате измерения величины
- 3. Смысл суммы и разности
- Практическая работа. Понятие положительной скалярной величины
- Практическая работа. Обоснование выбора действий при решении текстовых задач в начальной школе
- Теоретическая часть Вопросы к изучению
- Определения, теоремы, выводы
- Тема 19. Геометрические фигуры на плоскости и их свойства
- 1. Понятие геометрической фигуры
- 2. Углы
- 3. Параллельные и перпендикулярные прямые
- 4. Треугольники
- 5. Четырехугольники
- Параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны.
- 1. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
- 2. У параллелограмма противолежащие стороны и противолежащие углы раны.
- 6. Многоугольники
- 7. Окружность и круг
- 8. Построение геометрических фигур на плоскости.
- 1. Построить на данной прямой отрезок со, равный данному отрезку ав.
- 2. Отложить от данной полупрямой в данную полуплоскость угол, равный данному углу.
- 3. Найти середину отрезка.
- 4. Построить биссектрису данного угла.
- 5. Через данную точку провести прямую, перпендикулярную данной прямой.
- 9. Преобразования геометрических фигур. Понятие преобразования
- 1. Симметрия относительно точки (центральная симметрия).
- 2. Симметрия относительно прямой (осевая симметрия).
- 3. Гомотетия.
- 10. Движения и равенство фигур
- Практическая работа. Решение геометрических задач
- Практическая работа. Основные задачи на построение на плоскости
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 20. Изображения пространственных фигур
- 1. Свойства параллельного проектирования
- 2. Многогранники и их изображение
- 3. Шар, цилиндр, конус и их изображение
- Практическая работа. Изображение пространственных фигур на плоскости
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 21. Геометрические величины
- 1. Длина отрезка и ее измерение
- 2. Величина угла и ее измерение
- 3. Понятие площади фигуры и ее измерение
- 4. Площадь многоугольника
- 5. Площадь произвольной плоской фигуры и ее измерение
- Практическая работа. Геометрические величины
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Правила, замечания
- Практическая часть
- Список литературы
- Учебник для студентов высших педагогических учебных заведений специальности: «начальное обучение»
- Глузман Неля Анатольевна Кандидат педагогических наук, доцент, заведующий кафедрой методик начального и дошкольного образования рвуз «Крымский гуманитарный университет» (г. Ялта)