1. Высказывания с кванторами
В предыдущих лекциях были рассмотрены различные виды математических предложений. Определено, что среди них выделяются высказывания и высказывательные формы, которые могут быть элементарными и составными. Показано, как устанавливают значение истинности таких высказываний и как находят множество истинности высказывательных форм. Однако этим, не исчерпывается все многообразие формулировок математических предложений, и, значит, не выяснены многие правила общения с ними. Например, почему можно одну и ту же теорему о равенстве вертикальных углов формулировать по–разному:
Вертикальные углы равны.
Если углы вертикальные, то они равны.
Для того чтобы углы были равны, достаточно, чтобы они были вертикальными.
Для того чтобы углы были вертикальными, необходимо, чтобы они были равны.
Или: почему истинность предложения «сумма трех любых последовательных натуральных чисел делится на 3» надо доказывать, а чтобы убедится в истинности предложения «некоторые натуральные числа делятся на 3», достаточно привести конкретный пример?
Чтобы ответить на эти вопросы, необходимо более глубокое изучение математических предложений и, прежде всего, высказываний с кванторами.
В формулировкам математических предложений часто встречаются слова: «каждый», «все», «некоторые», «хотя бы один». Например, свойство противоположных сторон прямоугольника формулируется так: «в любом прямоугольнике противоположные стороны равны», а о свойстве натуральных чисел мы говорили, что «некоторые натуральные числа кратны 5». Выясним, каков смысл этих слов и как они используются в математике.
Если задана высказывательная форма, то, чтобы превратить ее в высказывание, достаточно вместо каждой из переменных, входящих в форму, подставить ее значение. Например, если на множестве N натуральных чисел задана высказывательная форма А(х) – «число х кратно 5», то, подставив в нее вместо х число 20, мы получим истинное высказывание «число 20 кратно 5». Если же в эту высказывательную форму подставить вместо х число 17, мы получим ложное высказывание «число 17 кратно 5».
Однако существуют и другие способы получения высказываний из высказывательных форм.
Если перед высказывательной формой «число х кратно 5» подставить слово «всякое», то получится предложение «всякое число х кратно 5». Относительно этого предложения можно задать вопрос, истинно оно или ложно. Значит, предложение «всякое число х кратно 5» (х N) – высказывание, причем ложное.
Определение. Выражение «для всякого х» в логике называется квантором общности по переменной х (переменная может быть обозначена и другой буквой) и обозначается символом х.
Запись (х) А(х) означает: «для всякого значения х предложение А(х)– истинное высказывание». Иногда эту запись дополняют обозначениями обозначением множества Х, на котором задана высказывательная форма А (х), и тогда предложение (х Х) А(х) можно прочитать :
а) для всякого х из множества Х истинно А(х);
б) всякий элемент из множества Х обладает свойством А.
Определение. Выражение «существует х такое, что …» в логике называется квантором существования по переменной х (переменная может быть обозначена и другой буквой) и обозначается символом х.
Запись ( х) А(х) означает: «существует такое значение х, что А(х) – истинное высказывание». Иногда эту запись дополняют обозначением множества Х, на котором задана высказывательная форма А(х), и тогда предложение ( хХ) А(х) можно прочитать:
а) существует такое х из множества Х, что истинно А(х);
б) хотя бы один элемент х из множества Х обладает свойством А.
Замечание. В математике наряду со словом «всякий» употребляют слова «каждый», «любой», а вместо слова «существует» используют слова «некоторые», «найдется», «есть», «хотя бы один».
Обратим внимание на особенность употребления в математике слова «некоторый». В обычной речи, говоря «некоторые», имеют в виду «по меньшей мере один, но не все», в математике же слово «некоторые» означает «по меньшей мере один, но, может быть, и все».
Итак, если задана одноместная высказывательная форма А(х), то чтобы превратить ее в высказывание, достаточно связать квантором общности или существования содержащуюся в ней переменную. Если же высказывательная форма содержит несколько переменных, то перевести ее в высказывание можно, если связать квантором каждую переменную. Например, если дана высказывательная форма « х у», то для получения высказывания надо связать квантором обе переменные: например, (х) ( у) х у или ( х) ( у) х у.
Однако важно уметь не только переходить от высказывательной формы к высказыванию с помощью кванторов, но и распознавать высказывания, содержащие кванторы, и выявлять их логическую структуру. Дело в том, что кванторы содержатся в формулировках определений, теорем и других математических предложений, хотя часто только подразумеваются. Например, в формулировке теоремы «Вертикальные углы равны» квантора в явном виде нет, но предполагается, что данное утверждение справедливо для всех вертикальных углов. Записывая коммутативное свойство сложения в виде а+в=в+а, подразумевают, что оно справедливо для любых чисел а и в.
Задача 1. Выявить логическую структуру следующих высказываний:
а) Некоторые нечетные числа делятся на 5.
б) Произведение двух любых последовательных натуральных чисел кратно 2.
в) В прямоугольнике диагонали равны.
Решение. а) В этом предложении имеется квантор существования, он выражен словом «некоторые», и высказывательная форма «нечетные числа делятся на 5», заданная на множестве Х нечетных чисел. Обозначим высказывательную форму символом А(х), тогда логическая структура данного предложения такова: ( хХ) А(х). Если предложение А(х) записать, используя символы: «х 5», то исходное высказывание можно представить в таком виде: ( хХ) х 5, где Х – множество нечетных чисел.
б) В данном предложении имеется квантор общности, он представлен словом «любой», и высказывательная форма «произведение двух последовательных натуральных чисел кратно 2», заданная на множестве N натуральных чисел. Обозначим ее А(х). Тогда логическая структура данного высказывания такова: ( х N) А(х). И если А(х) представить в виде х (х +1) 2, то заданное предложение можно записать так: ( х N) х (х +1) 2.
в) В заданном высказывании квантора в явном виде нет, но подразумевается, что свойством «иметь равные диагонали» обладают любые прямоугольники, следовательно, этот квантор общности можно включить в заданное высказывание, не изменив его сути: «в любом прямоугольнике диагонали равны». Тогда его структура такова: (х Х) А(х), где Х – множество прямоугольников, А (х) – высказывательная форма «в прямоугольнике диагонали равны».
- Министерство образования и науки украины
- Содержание
- Пояснительная записка
- Структура курса
- Модуль 1. Множества
- Тема 1. Множества и операции над ними
- Введение
- 1. Понятие множества и элемента множества
- 2.Способы задания множества
- 3. Отношения между множествами. Подмножество
- Примеры
- 4. Круги Эйлера-Венна
- Практическая работа. Понятие множества
- Тема 2. Операции над множествами
- 1. Пересечение множеств
- 2. Объединение множеств
- 3. Законы пересечения и объединения множеств
- Определение. Для любых множеств а, в и с выполняются равенства:
- 4. Вычитание множеств. Дополнение подмножества
- Практическая работа. Операции над множествами
- Вопросы к изучению
- Основные понятия
- Обозначения
- Практическая часть
- Тема 2.1. Понятие разбиения множества на классы
- 1. Понятие разбиения множества на классы
- Практическая работа. Разбиение множества на классы
- Вопросы к изучению
- Обозначения
- Правила
- Тема 2.2. Декартово произведение множеств
- 1. Декартово произведение множеств
- 2. Свойства операции нахождения декартова произведения
- 3. Кортеж. Длина кортежа
- Практическая работа. Декартово произведение
- Вопросы к изучению
- Обозначения
- Правила
- Тема 3. Понятие соответствия Содержание
- 1. Понятие соответствия между множествами
- Рассмотрим примеры соответствий, изучаемых в начальном курсе математики.
- 2. Способы задания соответствий
- 3. Соответствие обратное данному
- 4. Взаимно однозначные соответствия
- 5. Равномощные множества
- Практическая работа. Соответствия между двумя множествами
- Тема 4. Числовые функции
- 1. Понятие функции. Способы задания функций
- 2. Прямая и обратная пропорциональности
- Основные понятия темы
- Основные выводы, замечания
- Тема 5. Отношения на множестве
- 1. Понятие отношения между элементами одного множества
- 2. Способы задания отношений
- 3. Свойства бинарных отношений
- Практическая работа. Отношения на множестве
- Тема 6. Выражение. Уравнение. Неравенство
- Выражения и их тождественные преобразования.
- 1. Выражения и их тождественные преобразования
- 3. Уравнения с одной переменной
- 4. Неравенства с одной переменной
- Практическая работа. Выражения и их преобразования. Числовые равенства и неравенства с одной переменной.
- Практическая работа. Уравнения и неравенства с одной переменной.
- Контрольная (зачетная) работа
- Модуль 2. Математические утверждения и их структура
- Тема 7. Математические понятия Содержание
- 1. Математические понятия. Объем и содержание понятия
- Пусть заданы два понятия а и b. Объемы их обозначим соответственно а и в.
- 2. Отношение рода и вида между понятиями
- 4. Требования к определению понятий
- 5. Неявные определения
- Практическая работа. Математические понятия
- Вопросы к изучению
- Представления о математических понятиях -
- Обозначения
- Тема 8. Высказывания и высказывательные формы
- 2. Конъюнкция и дизъюнкция высказываний
- 3. Конъюнкция и дизъюнкция высказывательных форм
- Практическая работа. Высказывания и высказывательные формы
- Тема 8.1. Высказывания с квантором. Отрицание высказываний и высказывательных форм
- 1. Высказывания с кванторами
- 2. Истинность высказываний с кванторами
- 3. Отрицание высказываний и высказывательных форм
- Практическая работа. Высказывания с кванторами. Отрицание высказываний и высказывательных форм
- Тема 8.2. Отношения следования и равносильности между предложениями
- 1. Отношения следования между предложениями
- 2. Отношения равносильности между предложениями
- Практическая работа. Отношения следования и равносильности между предложениями
- Вопросы к изучению
- Основные понятия темы
- Обозначения
- Тема 8.3. Структура теоремы. Виды теорем
- 1. Структура теоремы
- 2. Отличие теоремы от правила
- 3. Виды теорем
- Практическая работа. Структура теоремы. Виды теорем
- Тема 9. Математическое доказательство
- 1. Понятие умозаключения.
- 2. Дедуктивные умозаключения Умозаключения, построенные по схеме
- 3. Индуктивные умозаключения. Полная индукция
- Все s1, s2,..., Sп исчерпывают весь класс s (4) Все s есть р
- 4. Неполная индукция
- 5. Математическая индукция
- 6. Аналогия
- 7. Умозаключения «от противного»
- 8. Некоторые виды неправильных умозаключений
- 9. Логическая структура математической задачи
- 10. Закон достаточного основания и аксиоматический метод в математике
- Практическая работа. Математическое доказательство
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 10. Текстовая задача и процесс ее решения
- 1. Роль и место задач в начальном курсе математики. Функции текстовых задач
- 2. Структура процесса решения текстовой задачи
- 2. Методы и способы решения текстовых задач
- 3. Этапы решения задачи и приемы их выполнения
- 1. Анализ задачи
- 4. Поиск и составление плана решения задачи
- 5. Осуществление плана решения задачи
- 6. Проверка решения задачи
- 7. Моделирование в процессе решения текстовых задач
- Практическая работа. Текстовая задача и процесс ее решения
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 11. Комбинаторные задачи и их решение
- 1. Комбинаторика
- 2. Правила суммы и произведения
- 3. Размещения и сочетания
- Практическая работа. Комбинаторные задачи и их решение
- Вопросы для коллоквиума
- Модуль 3. Целые неотрицательные числа
- Тема 12. Аксиоматическое построение системы натуральных чисел
- 1. Из истории возникновения понятия натурального числа
- 2. Об аксиоматическом способе построения теории
- 3. Основные понятия и аксиомы. Определение натурального числа
- 4. Количественные натуральные числа. Счет
- Семинарское занятие. История возникновения понятия натурального числа Вопросы к изучению
- Вопросы для самоконтроля
- Задания для самостоятельной работы
- Тема 13. Теоретико-множественный подход к построению натурального ряда чисел. Теоретико-множественный смысл арифметических действий.
- 1. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- 2. Теоретико-множественный смысл суммы
- 3. Теоретико-множественный смысл разности
- 4. Теоретико-множественный смысл произведения
- 5. Теоретико-множественный смысл частного натуральных чисел
- Практическая работа. Теоретико–множественный смысл суммы, разности, произведения, частного и отношения «меньше»
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Тема 14. Позиционные и непозиционные системы исчисления
- 1. Позиционные и непозиционные системы счисления
- 2. Запись числа в десятичной системе счисления
- Практическая работа. Запись целых неотрицательных чисел
- Теоретическая часть
- Основные понятия темы
- Тема 15. Алгоритмы действий над целыми неотрицательными числами
- 1. Алгоритм сложения
- 2. Алгоритм вычитания
- 3. Алгоритм умножения
- 4. Алгоритм деления
- Практическая работа. Алгоритмы арифметических действий
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Тема 16. Отношение делимости и его свойства Содержание
- Признаки делимости.
- Наименьшее общее кратное и наибольший общий делитель.
- 1. Отношение делимости и его свойства
- 2. Признаки делимости
- 3. Наименьшее общее кратное и наибольший общий делитель
- 4. Простые числа
- 5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- Практическая работа. Делимость натуральных чисел
- Тема 17. О расширении множества натуральных чисел
- 1. Понятие дроби
- 2. Положительные рациональные числа
- 3. Запись положительных рациональных чисел в виде десятичных дробей
- 4. Действительные числа
- Практическая работа. Действия над положительными действительными числами
- Вопросы к коллоквиуму
- Теоретико-множественный смысл отношения «меньше», «равно»
- Теоретико-множественный смысл суммы.
- Теоретико-множественный смысл разности.
- Признаки делимости.
- Тема 18. Натуральное число как мера величины. Измерение величин
- 1. Понятие положительной скалярной величины и ее измерения
- 2. Смысл натурального числа, полученного в результате измерения величины
- 3. Смысл суммы и разности
- Практическая работа. Понятие положительной скалярной величины
- Практическая работа. Обоснование выбора действий при решении текстовых задач в начальной школе
- Теоретическая часть Вопросы к изучению
- Определения, теоремы, выводы
- Тема 19. Геометрические фигуры на плоскости и их свойства
- 1. Понятие геометрической фигуры
- 2. Углы
- 3. Параллельные и перпендикулярные прямые
- 4. Треугольники
- 5. Четырехугольники
- Параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны.
- 1. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
- 2. У параллелограмма противолежащие стороны и противолежащие углы раны.
- 6. Многоугольники
- 7. Окружность и круг
- 8. Построение геометрических фигур на плоскости.
- 1. Построить на данной прямой отрезок со, равный данному отрезку ав.
- 2. Отложить от данной полупрямой в данную полуплоскость угол, равный данному углу.
- 3. Найти середину отрезка.
- 4. Построить биссектрису данного угла.
- 5. Через данную точку провести прямую, перпендикулярную данной прямой.
- 9. Преобразования геометрических фигур. Понятие преобразования
- 1. Симметрия относительно точки (центральная симметрия).
- 2. Симметрия относительно прямой (осевая симметрия).
- 3. Гомотетия.
- 10. Движения и равенство фигур
- Практическая работа. Решение геометрических задач
- Практическая работа. Основные задачи на построение на плоскости
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 20. Изображения пространственных фигур
- 1. Свойства параллельного проектирования
- 2. Многогранники и их изображение
- 3. Шар, цилиндр, конус и их изображение
- Практическая работа. Изображение пространственных фигур на плоскости
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Практическая часть
- Тема 21. Геометрические величины
- 1. Длина отрезка и ее измерение
- 2. Величина угла и ее измерение
- 3. Понятие площади фигуры и ее измерение
- 4. Площадь многоугольника
- 5. Площадь произвольной плоской фигуры и ее измерение
- Практическая работа. Геометрические величины
- Теоретическая часть Вопросы к изучению
- Основные понятия темы
- Правила, замечания
- Практическая часть
- Список литературы
- Учебник для студентов высших педагогических учебных заведений специальности: «начальное обучение»
- Глузман Неля Анатольевна Кандидат педагогических наук, доцент, заведующий кафедрой методик начального и дошкольного образования рвуз «Крымский гуманитарный университет» (г. Ялта)