logo
Учебник Математики

Правила

n (А В) = n (А) + n (В) – n ;

n (А В) = n (А) + n (В), если (А    = .

Практическая часть

Обязательные задания

  1. Выделите из множества К=0, 2, 6, 8, 9, 12, 15 два подмножества. В одно включите числа, кратные 2, а в другое – кратные 3. Произошло ли разбиение множества К на класс чисел, кратных 2, и класс чисел, кратных 3? Можно ли разбить данное множество К на три класса: К1= 0,2,6, К2= 8,9, К3= 12,15?

  2. Определите классы разбиения множества Х четырехугольников, если оно осуществляется при помощи: 1) свойства «быть прямоугольником»; 2) свойств «быть прямоугольником» и «быть ромбом»; 3) свойств «быть прямоугольником» и «быть квадратом»; 4) свойств «быть прямоугольником» и «быть трапецией».

  3. Из множества натуральных чисел выделите подмножество чисел, кратных 8. На сколько классов при этом произошло разбиение множества натуральных чисел? Изобразите полученные классы при помощи кругов Эйлера и назовите по два представителя из каждого класса.

  4. На какие классы разбивается множество точек плоскости при помощи: а) окружности; б) круга; в) прямой?

  5. На множестве натуральных чисел рассматривается свойство «быть кратным 7». Сколько классов разбиения множества N оно определяет? Назовите по два элемента из каждого класса.

  6. Из множества четырехугольников выделили подмножество фигур с попарно параллельными сторонами. На какие классы разбивается множество четырехугольников с помощью свойства «иметь попарно параллельные стороны»? Начертите по два четырехугольника из каждого класса.

  7. Изобразите при помощи кругов Эйлера множество N натуральных чисел и его подмножества: четных чисел и чисел кратных 7. Можно ли утверждать, что множество N разбито: а) на два класса: четных чисел и чисел, кратных 7; б) на четыре класса: четных чисел, кратных 7; в) нечетных чисел, не кратных 7; г) четных чисел не кратных 7; д) нечетных чисел, кратных 7.

  8. На множестве четырехугольников рассматриваются два свойства: «быть прямоугольником» и «быть квадратом». На какие классы разобьется множество четырехугольников при помощи этих свойств? Начертите по два четырехугольника из каждого класса.

  9. Изменится ли ответ в предыдущем упражнении, если на множестве четырехугольников рассмотреть свойства: а) «быть прямоугольником» и «быть ромбом»; б) «быть прямоугольником» и «быть трапецией»?

  10. Можно ли узнать, сколько человек в классе, если в нем: 1) 17 мальчиков и 15 девочек; 2) 17 мальчиков и 23 спортсмена?

  11. Из 50 учащихся 37 изучают английский язык, 17- немецкий. Сколько человек изучают оба языка?

Творческие задания

  1. Из 32 школьников 12 занимаются в волейбольной секции, 15 – в баскетбольной, 8 человек занимаются и в той и в другой секции. Сколько школьников не занимаются ни в волейбольной, ни в баскетбольной секции?

  2. В делегации 6 человек, знающих французский или немецкий язык. Трое из них говорят только на французском, двое – только на немецком. Сколько человек говорят на двух языках – французском и немецком?

  3. Из 100 студентов английский язык изучают 28 человека, немецкий – 30 человек, французский – 42, английский и немецкий – 8, английский и французский – 10, немецкий и французский – 15. Все три языка изучают 3 учащихся. Сколько студентов изучают только один язык? Сколько студентов не изучают ни одного языка?

  4. В школе 70 учеников. Из них 27 ходит в драмкружок, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8 спортсменов. 3 спортсмена посещают и драмкружок, и хор. Сколько ребят не поют в хоре, не увлекаются спортом и не ходят в драмкружок?

  5. Докажите, что если п – число свойств, с помощью которых множество разбивается на максимальное число классов, то число этих классов равно 2п