1.1. Множества и их элементы. Способы задания множеств
Первичным понятием теории множества является понятие самого множества. Данный термин был введен в математику создателем теории множеств Г. Кантором1. Следуя ему, под множеством понимается совокупность объектов произвольной природы, которая рассматривается как единое целое. Объекты, входящие в состав множества, называются его элементами.
Это описание понятия множества нельзя считать логическим определением, а всего лишь пояснением. Понятие множества принимается как исходное, первичное, то есть не сводимое к другим понятиям.
Примерами множеств могут служить множество всех книг, составляющих данную библиотеку, множество всех точек данной линии, множество всех решений данного уравнения, множество всех одноклеточных организмов и т. п.
Множества принято обозначать прописными буквами латинского алфавита: A, B, C, … Обозначается множество скобками {…}, внутри которых либо просто перечисляются элементы, либо описываются их свойства. Для числовых множеств будем использовать следующие обозначения:
N – множество натуральных чисел;
N0 – множество неотрицательных целых чисел;
Z – множество целых чисел;
Q – множество рациональных чисел;
I – множество иррациональных чисел;
R – множество действительных чисел;
C – множество комплексных чисел.
Элементы множества будем обозначать строчными латинскими буквами: a, b, c, …
Предложения вида «объект a есть элемент множества A», «объект a принадлежит множеству A», имеющие один и тот же смысл, кратко записывают в виде a A. Если элемент a не принадлежит множеству A, то пишут a A. Символ называется знаком принадлежности.
Множества могут содержать как конечное число элементов, так и бесконечное. Например, множество всех корней уравнения x2 – 3x + 2 = 0 конечно (два элемента), а множество всех точек прямой бесконечно. Рассматривают в математике и множество, не содержащее ни одного элемента.
Определение 1.1. Множество, не содержащее ни одного элемента, называется пустым и обозначается символом .
Число элементов конечного множества называется его мощностью. Если множество A содержит n элементов, то будем писать |A| = n. Если множество A = , то |A| = 0. Мощность бесконечного множества является более сложным понятием и изучается в дискретной математике и в числовых системах.
Замечание 1.1. Элементами множества могут быть множества. Например, можно говорить о множестве групп некоторого факультета университета. Элементы этого множества – группы, являющиеся в свою очередь множествами студентов. Но конкретный студент одной из групп уже не является элементом множества групп факультета.
Определение 1.2. Множество, элементами которого являются другие множества, называется семейством (или классом).
Определение 1.3. Если все элементы данной совокупности множеств принадлежат некоторому одному множеству, то такое множество называется универсальным множеством, и обозначается U.
Множество считают заданным, если о любом объекте можно сказать, принадлежит он этому множеству или не принадлежит. Множество можно задать следующими способами:
перечислением всех его элементов;
характеристическим свойством элементов множества;
порождающей процедурой.
Первый способ задания множеств применим только для конечных множеств, да и то при условии, что число элементов множества невелико. Если a, b, c, d – обозначения различных объектов, то множество A этих объектов записывают так: A = {a, b, c, d}. Запись читают: «A – множество, элементы которого a, b, c, d».
Замечание 1.2. Порядок перечисления элементов множества не имеет значения. Например, множества {m, n, k, r} и {n, m, r, k} совпадают.
Вторым способом можно задавать как конечные, так и бесконечные множества. Характеристическое свойство – это такое свойство, которым обладает каждый элемент, входящий в данное множество, и не обладает ни один элемент, который ему не принадлежит. Если обозначить символом P(а) характеристическое свойство элементов множества A, то тогда используется следующая запись: A = {а P(а)}.
Порождающая процедура описывает способ получения элементов нового множества из уже полученных элементов или из других объектов. Тогда элементами множества считаются все объекты, которые могут быть получены с помощью этой процедуры. Другими словами, порождающая процедура – это процесс, который будучи запущен, порождает все элементы данного множества. С помощью порождающей процедуры можно задавать множества, содержащие любое число элементов.
Пример 1.1. Определим различными способами множество M всех нечетных натуральных чисел, не превышающих 10:
M = {1, 3, 5, 7, 9};
M = {m | m N, m < 10, m – нечетное число} или
M = {2n – 1 | n N, n 5};
порождающая процедура определяется правилами:
1 M;
если m M, то (m + 2) M, где m 7.
- Т. Н. Матыцина е. К. Коржевина линейная алгебра
- Оглавление
- Введение
- 1. Множества
- 1.1. Множества и их элементы. Способы задания множеств
- 1.2. Подмножества. Диаграммы Эйлера – Венна
- 1.3. Операции над множествами и их свойства
- 1. Объединение (или сумма).
- 2. Пересечение (или произведение).
- 3. Разность.
- 4. Декартовое произведение (или прямое произведение).
- Свойства операций над множествами
- 1.4. Метод математической индукции
- 1.5. Комплексные числа
- Операции над комплексными числами
- Геометрическая интерпретация комплексных чисел
- Тригонометрическая форма комплексного числа
- Действия над комплексными числами в тригонометрической форме
- 3. Возведение в степень.
- 4. Извлечение корня n-ой степени.
- Показательная форма комплексного числа
- 2. Бинарные отношения
- 2.1. Понятие отношения
- Способы задания бинарных отношений
- Операции над бинарными отношениями
- 2.2. Свойства бинарных отношений
- 2.3. Отношение эквивалентности
- 2.4. Функции
- 3. Матрицы и действия над ними
- 3.1. Общие понятия
- 3.2. Основные операции над матрицами и их свойства
- 3.2.1. Сложение однотипных матриц
- 3.2.2. Умножение матрицы на число
- 3.2.3. Умножение матриц
- 3.3. Транспонирование матриц
- 4. Определители квадратных матриц
- 4.1. Определители матриц второго и третьего порядка
- 4.2. Определитель матрицы n-го порядка
- 4.3. Свойства определителей
- 4.4. Практическое вычисление определителей
- 5. Ранг матрицы. Обратная матрица
- 5.1. Понятие ранга матрицы
- 5.2. Нахождение ранга матрицы методом окаймления миноров
- 5.3. Нахождение ранга матрицы с помощью элементарных преобразований
- 5.4. Понятие обратной матрицы и способы ее нахождения
- Алгоритм нахождения обратной матрицы
- Нахождение обратной матрицы с помощью элементарных преобразований
- 6. Системы линейных уравнений
- 6.1. Основные понятия и определения
- 6.2. Методы решения систем линейных уравнений
- 6.2.1. Метод Крамера
- 6.2.2. Метод обратной матрицы
- 6.2.3. Метод Гаусса
- Описание метода Гаусса
- 6.3. Исследование системы линейных уравнений
- 6.4. Однородные системы линейных уравнений
- Свойства решений однородной системы линейных уравнений
- Фундаментальный набор решений однородной системы линейных уравнений
- 7. Арифметическое n-мерное векторное пространство
- 7.1. Основные понятия
- 7.2. Линейная зависимость и независимость системы векторов
- Свойства линейной зависимости системы векторов
- Единичная система векторов
- Две теоремы о линейной зависимости
- 7.3. Базис и ранг системы векторов
- Базис пространства Rn
- Ранг системы векторов
- 8. Векторные (линейные) пространства
- 8.1. Определение векторного пространства над произвольным полем.
- Простейшие свойства векторных пространств
- Линейная зависимость и независимость системы векторов
- 8.2. Подпространства. Линейные многообразия
- Пересечение и сумма подпространств
- Линейные многообразия
- 8.3. Базис и размерность векторного пространства
- 8.3.1. Конечномерные векторные пространства
- Базис конечномерного векторного пространства
- 8.3.2. Базисы и размерности подпространств
- 8.3.3. Координаты вектора относительно данного базиса
- 8.3.4. Координаты вектора в различных базисах
- 8.4 Евклидовы векторные пространства
- Скалярное произведение в координатах
- Метрические понятия
- Процесс ортогонализации
- Скалярное произведение в ортонормированном базисе
- Ортогональное дополнение подпространства
- 9. Линейные операторы
- 9.1. Основные понятия и способы задания линейных операторов
- Способы задания линейных операторов
- 9.2. Матрица линейного оператора Связь между координатами вектора и координатами его образа
- Матрицы линейного оператора в различных базисах
- 9.3. Подобные матрицы
- Свойства отношения подобия матриц
- 9.4. Действия над линейными операторами
- 1. Сложение линейных операторов.
- Свойства сложения линейных операторов
- 9.5. Ядро и образ линейного оператора
- 9.6. Обратимые линейные операторы
- 9.7. Собственные векторы линейного оператора
- 9.7.1. Свойства собственных векторов
- 9.7.2. Характеристический многочлен матрицы
- 9.7.3. Нахождение собственных векторов линейного оператора
- 9.7.4. Алгоритм нахождения собственных векторов линейного оператора
- 9.7.5.Условия, при которых матрица подобна диагональной матрице
- 10. Жорданова нормальная форма матрицы линейного оператора
- 10.1. Понятие λ-матрицы
- Свойства λ-матрицы
- 10.2. Жорданова нормальная форма
- 10.3.Приведение матрицы к жордановой (нормальной) форме
- Алгоритм приведения матрицы a к жордановой форме
- 11. Билинейные и квадратичные формы
- 11.1. Билинейные формы
- Свойства билинейных форм
- Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы
- 11.2. Квадратичные формы
- Приведение квадратичной формы к каноническому виду
- Закон инерции квадратичных форм
- Классификация квадратичных форм
- Необходимое и достаточное условие знакоопределенности квадратичной формы
- Необходимое и достаточное условие знакопеременности квадратичной формы
- Необходимое и достаточное условие квазизнакопеременности квадратичной формы
- Критерий Сильвестра знакоопределенности квадратичной формы
- Заключение
- Библиографический список
- Линейная алгебра
- 156961, Г. Кострома, ул. 1 Мая, 14