2.4. Функции
Определение 2.20. Бинарное отношение ƒ Í A ´ B называется функцией из множества A в множество B, если для любого x Î A существует единственный элемент y Î B такой, что (x, y) Î ƒ. При этом элемент y обозначается через ƒ(x) и называется значением функции ƒ для аргумента x. Функция f из A в B обозначается через ƒ: A → B или A B. Если (x, y) Î ƒ, то используется общепринятая запись y = ƒ(x), а также запись ƒ: x y (означает, что функция ƒ ставит в соответствие элементу x элемент y).
Область определения и область значений функции, равные функции определяются так же, как и для бинарных отношений.
Аргументами функции могут являться элементы произвольной природы, в частности, кортежи длины n (x1, x2, …, xn). Функцию ƒ: An → B называют n-местной функцией из A в B. Тогда пишут y = ƒ(x1, x2, …, xn) и говорят, что y есть значение функции ƒ при значении аргументов x1, x2, …, xn.
Функции называются также отображениями. Пусть ƒ – функция из A в B. Если A = Domƒ и Imƒ Í B, то говорят, что ƒ есть отображение множества A в множество B. Если A = Domƒ и B = Imƒ, то говорят, что ƒ есть отображение множества A на множество B.
Определение 2.21. Функция ƒ Í A ´ B называется инъективной, или инъекцией, если " x, y Î A, ƒ(x) = ƒ(y) Þ x = y.
Определение 2.22. Функция ƒ Í A ´ B называется сюръективной, или сюръекцией, если для каждого элемента y Î B существует хотя бы один элемент x Î A такой, что y = ƒ(x).
Заметим, что сюръективная функция ƒ Í A ´ B является отображением A на B.
Определение 2.23. Функция ƒ Í A ´ B называется биективной (биекцией) или взаимно однозначным соответствием между множествами A и B, если она одновременно инъективна и сюръективна.
Определение 2.24. Если соответствие, обратное к функции ƒ Í A ´ B, является функциональным и полностью определенным, то оно называется функцией, обратной к ƒ и обозначается ƒ–1.
Так как в обратном соответствии образы и прообразы меняются местами, то для существования функции, обратной к функции f Í A ´ B, необходимо и достаточно, чтобы Imf = B и каждый элемент y Î Imf имел единственный прообраз.
Утверждение 2.3. Для функции ƒ: A → B существует обратная к ней функция ƒ–1: B → A тогда и только тогда, когда ƒ – биекция.
Определение 2.25. Пусть даны функции ƒ: A → B и g: B → C. Функция h: A → C называется композицией (суперпозицией) функций f и g, если " x Î A, h(x) = g(f(x)).
Композиция функций f и g обозначается через g ° f, при этом знак ° часто опускается.
Yandex.RTB R-A-252273-3
- Т. Н. Матыцина е. К. Коржевина линейная алгебра
- Оглавление
- Введение
- 1. Множества
- 1.1. Множества и их элементы. Способы задания множеств
- 1.2. Подмножества. Диаграммы Эйлера – Венна
- 1.3. Операции над множествами и их свойства
- 1. Объединение (или сумма).
- 2. Пересечение (или произведение).
- 3. Разность.
- 4. Декартовое произведение (или прямое произведение).
- Свойства операций над множествами
- 1.4. Метод математической индукции
- 1.5. Комплексные числа
- Операции над комплексными числами
- Геометрическая интерпретация комплексных чисел
- Тригонометрическая форма комплексного числа
- Действия над комплексными числами в тригонометрической форме
- 3. Возведение в степень.
- 4. Извлечение корня n-ой степени.
- Показательная форма комплексного числа
- 2. Бинарные отношения
- 2.1. Понятие отношения
- Способы задания бинарных отношений
- Операции над бинарными отношениями
- 2.2. Свойства бинарных отношений
- 2.3. Отношение эквивалентности
- 2.4. Функции
- 3. Матрицы и действия над ними
- 3.1. Общие понятия
- 3.2. Основные операции над матрицами и их свойства
- 3.2.1. Сложение однотипных матриц
- 3.2.2. Умножение матрицы на число
- 3.2.3. Умножение матриц
- 3.3. Транспонирование матриц
- 4. Определители квадратных матриц
- 4.1. Определители матриц второго и третьего порядка
- 4.2. Определитель матрицы n-го порядка
- 4.3. Свойства определителей
- 4.4. Практическое вычисление определителей
- 5. Ранг матрицы. Обратная матрица
- 5.1. Понятие ранга матрицы
- 5.2. Нахождение ранга матрицы методом окаймления миноров
- 5.3. Нахождение ранга матрицы с помощью элементарных преобразований
- 5.4. Понятие обратной матрицы и способы ее нахождения
- Алгоритм нахождения обратной матрицы
- Нахождение обратной матрицы с помощью элементарных преобразований
- 6. Системы линейных уравнений
- 6.1. Основные понятия и определения
- 6.2. Методы решения систем линейных уравнений
- 6.2.1. Метод Крамера
- 6.2.2. Метод обратной матрицы
- 6.2.3. Метод Гаусса
- Описание метода Гаусса
- 6.3. Исследование системы линейных уравнений
- 6.4. Однородные системы линейных уравнений
- Свойства решений однородной системы линейных уравнений
- Фундаментальный набор решений однородной системы линейных уравнений
- 7. Арифметическое n-мерное векторное пространство
- 7.1. Основные понятия
- 7.2. Линейная зависимость и независимость системы векторов
- Свойства линейной зависимости системы векторов
- Единичная система векторов
- Две теоремы о линейной зависимости
- 7.3. Базис и ранг системы векторов
- Базис пространства Rn
- Ранг системы векторов
- 8. Векторные (линейные) пространства
- 8.1. Определение векторного пространства над произвольным полем.
- Простейшие свойства векторных пространств
- Линейная зависимость и независимость системы векторов
- 8.2. Подпространства. Линейные многообразия
- Пересечение и сумма подпространств
- Линейные многообразия
- 8.3. Базис и размерность векторного пространства
- 8.3.1. Конечномерные векторные пространства
- Базис конечномерного векторного пространства
- 8.3.2. Базисы и размерности подпространств
- 8.3.3. Координаты вектора относительно данного базиса
- 8.3.4. Координаты вектора в различных базисах
- 8.4 Евклидовы векторные пространства
- Скалярное произведение в координатах
- Метрические понятия
- Процесс ортогонализации
- Скалярное произведение в ортонормированном базисе
- Ортогональное дополнение подпространства
- 9. Линейные операторы
- 9.1. Основные понятия и способы задания линейных операторов
- Способы задания линейных операторов
- 9.2. Матрица линейного оператора Связь между координатами вектора и координатами его образа
- Матрицы линейного оператора в различных базисах
- 9.3. Подобные матрицы
- Свойства отношения подобия матриц
- 9.4. Действия над линейными операторами
- 1. Сложение линейных операторов.
- Свойства сложения линейных операторов
- 9.5. Ядро и образ линейного оператора
- 9.6. Обратимые линейные операторы
- 9.7. Собственные векторы линейного оператора
- 9.7.1. Свойства собственных векторов
- 9.7.2. Характеристический многочлен матрицы
- 9.7.3. Нахождение собственных векторов линейного оператора
- 9.7.4. Алгоритм нахождения собственных векторов линейного оператора
- 9.7.5.Условия, при которых матрица подобна диагональной матрице
- 10. Жорданова нормальная форма матрицы линейного оператора
- 10.1. Понятие λ-матрицы
- Свойства λ-матрицы
- 10.2. Жорданова нормальная форма
- 10.3.Приведение матрицы к жордановой (нормальной) форме
- Алгоритм приведения матрицы a к жордановой форме
- 11. Билинейные и квадратичные формы
- 11.1. Билинейные формы
- Свойства билинейных форм
- Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы
- 11.2. Квадратичные формы
- Приведение квадратичной формы к каноническому виду
- Закон инерции квадратичных форм
- Классификация квадратичных форм
- Необходимое и достаточное условие знакоопределенности квадратичной формы
- Необходимое и достаточное условие знакопеременности квадратичной формы
- Необходимое и достаточное условие квазизнакопеременности квадратичной формы
- Критерий Сильвестра знакоопределенности квадратичной формы
- Заключение
- Библиографический список
- Линейная алгебра
- 156961, Г. Кострома, ул. 1 Мая, 14