2.3. Отношение эквивалентности
Определение 2.15. Бинарное отношение на множестве А называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.
Отношение эквивалентности обычно обозначают символами или .
Примерами отношения эквивалентности являются отношение равенства на множестве действительных чисел, отношение параллельности на множестве прямых евклидовой плоскости, подобие треугольников на плоскости.
Определение 2.16. Пусть R – отношение эквивалентности на множестве А и а А. Классом эквивалентности, порожденным элементом а, называется множество a/R = [a]R = {х А | (х, а) R}.
Совокупность всех классов эквивалентности отношения R на множестве А обозначается через А/R.
Определение 2.17. Представителем класса эквивалентности называется любой элемент этого класса.
Определение 2.18. Пусть А – непустое множество. Фактор- множеством множества А по отношению эквивалентности R называется множество A/R всех классов эквивалентности.
Определение 2.19. Разбиением непустого множества А называется совокупность его непустых подмножеств, таких что объединение всех подмножеств есть множество А, а пересечение любых двух различных подмножеств есть пустое множество.
Теорема 2.1. Пусть R – отношение эквивалентности на непустом множестве А. Тогда фактор-множество A/R является разбиением множества А.
Доказательство. Так как отношение R рефлексивно, то для любого a A имеем (а, а) R. Это значит, что каждый элемент a множества А принадлежит классу эквивалентности a/R. Итак, имеем семейство непустых классов a/R (a/R содержит по крайней мере один элемент a) и = A. Осталось доказать, что пересечение любых двух различных классов пусто. Для этого достаточно показать, что классы эквивалентности, имеющие хотя бы один общий элемент, совпадают. Пусть a/R и b/R – классы эквивалентности, имеющие общий элемент c. Тогда (с, а) R и (c, b) R. В силу симметричности отношения R из (c, a) R следует (a, c) R. Пусть х – любой элемент из a/R , тогда (х, a) R. Имеем, (х, a) R и (а, с) R. Следовательно, в силу транзитивности отношения R (х, с) R. Имеем, (х, с) R и (с, b) R. Тогда (х, b) R, так как отношение R транзитивно. Следовательно, x b/R. Таким образом, a/R b/R. Аналогично доказывается, что b/R a/R. Следовательно, a/R = b/R.
Из теоремы 2.1 непосредственно вытекает следующее следствие.
Следствие. Пусть R – отношение эквивалентности на множестве А. Тогда
a А, a a/R;
= A;
а, b А, а/R = b/R (а, b) R;
а/R ≠ b/R а/R ∩ b/R = .
Пусть S – разбиение непустого множества А и RS – бинарное отношение, определяемое следующим образом: (x, y) RS тогда и только тогда, когда x и y принадлежат одному и тому же подмножеству семейства S.
Теорема 2.2. Отношение RS, соответствующее разбиению S непустого множества А, является отношением эквивалентности на А, причем фактор-множество А/RS совпадает с разбиением S.
Доказательство. 1. Так как S есть разбиение, то a А, Мi S : a Мi. Следовательно, по определению отношения RS, (а, а) RS, а значит RS – рефлексивно.
2. Пусть a, b – произвольные элементы из А такие, что (а, b) RS. Тогда, по определению отношения RS, Мj S : a, b Мj. Следовательно, (b, a) RS. Получили, что RS – симметрично.
3. Пусть a, b, c – произвольные элементы из А такие, что (а, b) RS и (b, c) RS. Следовательно, по определению отношения RS, Mi , Mj S: a, b Mi и b, c Mj. Отсюда b Mi Mj. Но тогда, по определению разбиения, Mi = Mj , а значит, a, c Mi , и, по определению отношения RS, (a, c) RS. Получили, что RS – транзитивно.
Из п. 1 – 3 следует, что RS – отношение эквивалентности. Фактор-множество A/RS совпадает с разбиением S по определению отношения RS.
Замечание 2.2. Частным случаем отношения эквивалентности является отношение равенства элементов некоторого множества А, которое определяет разбиение множества на одноэлементные классы эквивалентности: x A, x/ = {x}. В этом случае классов эквивалентности оказывается столько же, сколько элементов содержится в множестве А, так как каждый элемент из А эквивалентен только самому себе.
В другом частном случае все элементы множества А эквивалентны друг другу. При этом фактор-множество А/ состоит всего из одного класса – самого множества А.
В любом другом случае среди классов эквивалентности имеется хотя бы один класс, который содержит больше одного элемента и в то же время не совпадает с самим множеством А.
Замечание 2.3. Понятие отношения эквивалентности имеет большое значение в математике. Дело в том, что элементы, входящие в один класс эквивалентности неразличимы с точки зрения рассматриваемого отношения эквивалентности. Поэтому считают, что класс эквивалентности определяется любым своим представителем (произвольным элементом этого класса). Это позволяет вместо всех элементов множества изучать совокупность представителей каждого класса эквивалентности. Свойства, которыми обладают все элементы некоторого класса эквивалентности, изучаются на одном его представителе.
Отношения эквивалентности играют важную роль в определении математических понятий.
Yandex.RTB R-A-252273-3
- Т. Н. Матыцина е. К. Коржевина линейная алгебра
- Оглавление
- Введение
- 1. Множества
- 1.1. Множества и их элементы. Способы задания множеств
- 1.2. Подмножества. Диаграммы Эйлера – Венна
- 1.3. Операции над множествами и их свойства
- 1. Объединение (или сумма).
- 2. Пересечение (или произведение).
- 3. Разность.
- 4. Декартовое произведение (или прямое произведение).
- Свойства операций над множествами
- 1.4. Метод математической индукции
- 1.5. Комплексные числа
- Операции над комплексными числами
- Геометрическая интерпретация комплексных чисел
- Тригонометрическая форма комплексного числа
- Действия над комплексными числами в тригонометрической форме
- 3. Возведение в степень.
- 4. Извлечение корня n-ой степени.
- Показательная форма комплексного числа
- 2. Бинарные отношения
- 2.1. Понятие отношения
- Способы задания бинарных отношений
- Операции над бинарными отношениями
- 2.2. Свойства бинарных отношений
- 2.3. Отношение эквивалентности
- 2.4. Функции
- 3. Матрицы и действия над ними
- 3.1. Общие понятия
- 3.2. Основные операции над матрицами и их свойства
- 3.2.1. Сложение однотипных матриц
- 3.2.2. Умножение матрицы на число
- 3.2.3. Умножение матриц
- 3.3. Транспонирование матриц
- 4. Определители квадратных матриц
- 4.1. Определители матриц второго и третьего порядка
- 4.2. Определитель матрицы n-го порядка
- 4.3. Свойства определителей
- 4.4. Практическое вычисление определителей
- 5. Ранг матрицы. Обратная матрица
- 5.1. Понятие ранга матрицы
- 5.2. Нахождение ранга матрицы методом окаймления миноров
- 5.3. Нахождение ранга матрицы с помощью элементарных преобразований
- 5.4. Понятие обратной матрицы и способы ее нахождения
- Алгоритм нахождения обратной матрицы
- Нахождение обратной матрицы с помощью элементарных преобразований
- 6. Системы линейных уравнений
- 6.1. Основные понятия и определения
- 6.2. Методы решения систем линейных уравнений
- 6.2.1. Метод Крамера
- 6.2.2. Метод обратной матрицы
- 6.2.3. Метод Гаусса
- Описание метода Гаусса
- 6.3. Исследование системы линейных уравнений
- 6.4. Однородные системы линейных уравнений
- Свойства решений однородной системы линейных уравнений
- Фундаментальный набор решений однородной системы линейных уравнений
- 7. Арифметическое n-мерное векторное пространство
- 7.1. Основные понятия
- 7.2. Линейная зависимость и независимость системы векторов
- Свойства линейной зависимости системы векторов
- Единичная система векторов
- Две теоремы о линейной зависимости
- 7.3. Базис и ранг системы векторов
- Базис пространства Rn
- Ранг системы векторов
- 8. Векторные (линейные) пространства
- 8.1. Определение векторного пространства над произвольным полем.
- Простейшие свойства векторных пространств
- Линейная зависимость и независимость системы векторов
- 8.2. Подпространства. Линейные многообразия
- Пересечение и сумма подпространств
- Линейные многообразия
- 8.3. Базис и размерность векторного пространства
- 8.3.1. Конечномерные векторные пространства
- Базис конечномерного векторного пространства
- 8.3.2. Базисы и размерности подпространств
- 8.3.3. Координаты вектора относительно данного базиса
- 8.3.4. Координаты вектора в различных базисах
- 8.4 Евклидовы векторные пространства
- Скалярное произведение в координатах
- Метрические понятия
- Процесс ортогонализации
- Скалярное произведение в ортонормированном базисе
- Ортогональное дополнение подпространства
- 9. Линейные операторы
- 9.1. Основные понятия и способы задания линейных операторов
- Способы задания линейных операторов
- 9.2. Матрица линейного оператора Связь между координатами вектора и координатами его образа
- Матрицы линейного оператора в различных базисах
- 9.3. Подобные матрицы
- Свойства отношения подобия матриц
- 9.4. Действия над линейными операторами
- 1. Сложение линейных операторов.
- Свойства сложения линейных операторов
- 9.5. Ядро и образ линейного оператора
- 9.6. Обратимые линейные операторы
- 9.7. Собственные векторы линейного оператора
- 9.7.1. Свойства собственных векторов
- 9.7.2. Характеристический многочлен матрицы
- 9.7.3. Нахождение собственных векторов линейного оператора
- 9.7.4. Алгоритм нахождения собственных векторов линейного оператора
- 9.7.5.Условия, при которых матрица подобна диагональной матрице
- 10. Жорданова нормальная форма матрицы линейного оператора
- 10.1. Понятие λ-матрицы
- Свойства λ-матрицы
- 10.2. Жорданова нормальная форма
- 10.3.Приведение матрицы к жордановой (нормальной) форме
- Алгоритм приведения матрицы a к жордановой форме
- 11. Билинейные и квадратичные формы
- 11.1. Билинейные формы
- Свойства билинейных форм
- Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы
- 11.2. Квадратичные формы
- Приведение квадратичной формы к каноническому виду
- Закон инерции квадратичных форм
- Классификация квадратичных форм
- Необходимое и достаточное условие знакоопределенности квадратичной формы
- Необходимое и достаточное условие знакопеременности квадратичной формы
- Необходимое и достаточное условие квазизнакопеременности квадратичной формы
- Критерий Сильвестра знакоопределенности квадратичной формы
- Заключение
- Библиографический список
- Линейная алгебра
- 156961, Г. Кострома, ул. 1 Мая, 14