Свойства операций над множествами
Свойства операций объединения, пересечения и дополнения иногда называют законами алгебры множеств. Перечислим основные свойства операций над множествами. Пусть задано универсальное множество U. Тогда ( A, B, C) A, B, C U выполняются следующие свойства:
1. идемпотентность:A A = A, A A = A;
2. коммутативность: A B = B A, A B = B A;
3. ассоциативность: A (B C) = (A B) C,
A (B C) = (A B) C;
4. дистрибутивность:
A (B C) = (A B) (A C) (дистрибутивность относительно ),
A (B C) = (A B) (A C) (дистрибутивность относительно );
5. свойства нуля: A = A, A = ;
6. свойства единицы: A U = U, A U = A;
7. поглощение: (A B) A = A, (A B) A = A;
8. инволютивность (свойство двойного дополнения): = A;
9. законы де Моргана4: , ;
10. закон включения: А B ;
11. свойства дополнения: А = U, А = ;
12. выражение для разности: А \ В = А .
Другие соотношения между множествами могут быть выведены на основе вышеприведенных свойств по правилам алгебры логики.
Справедливость каждого из этих свойств можно доказать, используя утверждение 1.1 и замечание 1.3. В качестве примера приведем доказательство дистрибутивности объединения относительно пересечения: A (B C) = (A B) (A C).
Пусть X = A (B C), Y = (A B) (A C). Надо доказать, что множества X и Y равны, то есть X Y и Y X. Множество X Y, если каждый элемент множества X принадлежит множеству Y. Пусть x X (x A) или (x B C) тогда
если x A, то x A B и x A C, следовательно, x Y;
если x B C, то x B и x C x A B и x A C, следовательно x Y.
Из произвольности элемента x следует, что X Y.
Предложим теперь, что y Y; то есть y (A B) (A C), тогда y A B и y A C. Возможны два случая:
если y A, то y B и y C, значит y B C; следовательно, y A (B C) y X;
если y A, то y A (B C) = X.
Из произвольности элемента y вытекает, что Y X.
Таким образом, получили равенство множеств X = Y.
- Т. Н. Матыцина е. К. Коржевина линейная алгебра
- Оглавление
- Введение
- 1. Множества
- 1.1. Множества и их элементы. Способы задания множеств
- 1.2. Подмножества. Диаграммы Эйлера – Венна
- 1.3. Операции над множествами и их свойства
- 1. Объединение (или сумма).
- 2. Пересечение (или произведение).
- 3. Разность.
- 4. Декартовое произведение (или прямое произведение).
- Свойства операций над множествами
- 1.4. Метод математической индукции
- 1.5. Комплексные числа
- Операции над комплексными числами
- Геометрическая интерпретация комплексных чисел
- Тригонометрическая форма комплексного числа
- Действия над комплексными числами в тригонометрической форме
- 3. Возведение в степень.
- 4. Извлечение корня n-ой степени.
- Показательная форма комплексного числа
- 2. Бинарные отношения
- 2.1. Понятие отношения
- Способы задания бинарных отношений
- Операции над бинарными отношениями
- 2.2. Свойства бинарных отношений
- 2.3. Отношение эквивалентности
- 2.4. Функции
- 3. Матрицы и действия над ними
- 3.1. Общие понятия
- 3.2. Основные операции над матрицами и их свойства
- 3.2.1. Сложение однотипных матриц
- 3.2.2. Умножение матрицы на число
- 3.2.3. Умножение матриц
- 3.3. Транспонирование матриц
- 4. Определители квадратных матриц
- 4.1. Определители матриц второго и третьего порядка
- 4.2. Определитель матрицы n-го порядка
- 4.3. Свойства определителей
- 4.4. Практическое вычисление определителей
- 5. Ранг матрицы. Обратная матрица
- 5.1. Понятие ранга матрицы
- 5.2. Нахождение ранга матрицы методом окаймления миноров
- 5.3. Нахождение ранга матрицы с помощью элементарных преобразований
- 5.4. Понятие обратной матрицы и способы ее нахождения
- Алгоритм нахождения обратной матрицы
- Нахождение обратной матрицы с помощью элементарных преобразований
- 6. Системы линейных уравнений
- 6.1. Основные понятия и определения
- 6.2. Методы решения систем линейных уравнений
- 6.2.1. Метод Крамера
- 6.2.2. Метод обратной матрицы
- 6.2.3. Метод Гаусса
- Описание метода Гаусса
- 6.3. Исследование системы линейных уравнений
- 6.4. Однородные системы линейных уравнений
- Свойства решений однородной системы линейных уравнений
- Фундаментальный набор решений однородной системы линейных уравнений
- 7. Арифметическое n-мерное векторное пространство
- 7.1. Основные понятия
- 7.2. Линейная зависимость и независимость системы векторов
- Свойства линейной зависимости системы векторов
- Единичная система векторов
- Две теоремы о линейной зависимости
- 7.3. Базис и ранг системы векторов
- Базис пространства Rn
- Ранг системы векторов
- 8. Векторные (линейные) пространства
- 8.1. Определение векторного пространства над произвольным полем.
- Простейшие свойства векторных пространств
- Линейная зависимость и независимость системы векторов
- 8.2. Подпространства. Линейные многообразия
- Пересечение и сумма подпространств
- Линейные многообразия
- 8.3. Базис и размерность векторного пространства
- 8.3.1. Конечномерные векторные пространства
- Базис конечномерного векторного пространства
- 8.3.2. Базисы и размерности подпространств
- 8.3.3. Координаты вектора относительно данного базиса
- 8.3.4. Координаты вектора в различных базисах
- 8.4 Евклидовы векторные пространства
- Скалярное произведение в координатах
- Метрические понятия
- Процесс ортогонализации
- Скалярное произведение в ортонормированном базисе
- Ортогональное дополнение подпространства
- 9. Линейные операторы
- 9.1. Основные понятия и способы задания линейных операторов
- Способы задания линейных операторов
- 9.2. Матрица линейного оператора Связь между координатами вектора и координатами его образа
- Матрицы линейного оператора в различных базисах
- 9.3. Подобные матрицы
- Свойства отношения подобия матриц
- 9.4. Действия над линейными операторами
- 1. Сложение линейных операторов.
- Свойства сложения линейных операторов
- 9.5. Ядро и образ линейного оператора
- 9.6. Обратимые линейные операторы
- 9.7. Собственные векторы линейного оператора
- 9.7.1. Свойства собственных векторов
- 9.7.2. Характеристический многочлен матрицы
- 9.7.3. Нахождение собственных векторов линейного оператора
- 9.7.4. Алгоритм нахождения собственных векторов линейного оператора
- 9.7.5.Условия, при которых матрица подобна диагональной матрице
- 10. Жорданова нормальная форма матрицы линейного оператора
- 10.1. Понятие λ-матрицы
- Свойства λ-матрицы
- 10.2. Жорданова нормальная форма
- 10.3.Приведение матрицы к жордановой (нормальной) форме
- Алгоритм приведения матрицы a к жордановой форме
- 11. Билинейные и квадратичные формы
- 11.1. Билинейные формы
- Свойства билинейных форм
- Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы
- 11.2. Квадратичные формы
- Приведение квадратичной формы к каноническому виду
- Закон инерции квадратичных форм
- Классификация квадратичных форм
- Необходимое и достаточное условие знакоопределенности квадратичной формы
- Необходимое и достаточное условие знакопеременности квадратичной формы
- Необходимое и достаточное условие квазизнакопеременности квадратичной формы
- Критерий Сильвестра знакоопределенности квадратичной формы
- Заключение
- Библиографический список
- Линейная алгебра
- 156961, Г. Кострома, ул. 1 Мая, 14